AIM: To develop a real-time PCR for detecting hepatitis B virus-(HBV) DNA based on TaqMan technology using a new MGB probe.METHODS: Plasmid containing the sequence of X gene (1414-1744 nt) was constructed as HBV-DNA s...AIM: To develop a real-time PCR for detecting hepatitis B virus-(HBV) DNA based on TaqMan technology using a new MGB probe.METHODS: Plasmid containing the sequence of X gene (1414-1744 nt) was constructed as HBV-DNA standard for quantitative analysis. A TaqMan-MGB probe between primers for amplification was designed to detect PCR products. The interested sequence contained in the plasmid and in clinical specimens was quantitatively measured.RESULTS: The detection limit of the assay for HBV DNA was 1 genome equivalent per reaction. A linear standard curve was obtained between 100 and 109 DNA copies/reaction (r>0.990). None of the negative control samples showed false-positive reactions in duplicate. HBV DNA was detected in 100% (50/50) of HBV patients with HbeAg, and in 72.0% (36/50) with HBsAg, HBeAb and HBcAb. The coefficient of variation for both intra- and inter-experimental variability demonstrated high reproducibility and accuracy.CONCLUSION: Real-time PCR based on TaqMan-MGB probe technology is an excellent method for detection of HBV DNA.展开更多
AIM: To rapidly quantify hepatitis B virus (HBV) DNA by real-time PCR using efficient TaqMan probe and extraction methods of virus DNA. METHODS: Three standards were prepared by cloning PCR products which targeted...AIM: To rapidly quantify hepatitis B virus (HBV) DNA by real-time PCR using efficient TaqMan probe and extraction methods of virus DNA. METHODS: Three standards were prepared by cloning PCR products which targeted S, C and X region of HBV genome into pGEM-T vector respectively. A pair of primers and matched TaqMan probe were selected by comparing the copy number and the Ct values of HBV serum samples derived from the three different standard curves using certain serum DNA. Then the efficiency of six HBV DNA extraction methods including guanidinium isothiocyanate, proteinase K, NaI, NaOH lysis, alkaline lysis and simple boiling was analyzed in sample A, B and C by real-time PCR. Meanwhile, 8 clinical HBV serum samples were quantified. RESULTS: The copy number of the same HBV serum sample originated from the standard curve of S, C and X regions was 5.7 × 10^4/mL, 6.3 × 10^2/mL and 1.6 × 10^3/ mL respectively. The relative Ct value was 26.6, 31.8 and 29.5 respectively. Therefore, primers and matched probe from S region were chosen for further optimization of six extraction methods. The copy number of HBV serum samples A, B and C was 3.49 × 10^9/mL, 2.08 × 10^6/mL and 4.40 × 10^7/mL respectively, the relative Ct value was 19.9, 30 and 26.2 in the method of NaOH lysis, which was the efficientest among six methods. Simple boiling showed a slightly lower efficiency than NaOH lysis. Guanidinium isothiocyanate, proteinase K and NaI displayed that the copy number of HBV serum sample A, B and C was around 10^S/mL, meanwhile the Ct value was about 30. Alkaline failed to quantify the copy number of three HBV serum samples. Standard deviation (SD) and coefficient variation (CV) were very low in all 8 clinical HBV serum samples, showing that quantification of HBV DNA in triplicate was reliable and accurate. CONCLUSION: Real-time PCR based on optimized primers and TaqMan probe from S region in combination with NaOH lysis is a simple, rapid and accurate method for quantification of HBV serum DNA.展开更多
To rapidly detect the harmful algae H.akashiwo qualitatively and quantitatively, sequences of the 18S rDNA deduced from H.akashiwo were used for designing species-specific primers, and a RFQ-PCR (Real-time Fluorescent...To rapidly detect the harmful algae H.akashiwo qualitatively and quantitatively, sequences of the 18S rDNA deduced from H.akashiwo were used for designing species-specific primers, and a RFQ-PCR (Real-time Fluorescent Quantitative Polymerase Chain Reaction) method was developed for quantitative detection of H.akashiwo. Primer H.akashiwo and TaqMan probe were designed, and the specificity of primer was checked with PCR. A calibration curve was constructed with cycle threshold value against visual counted cell number. And the value of the curve was tested with other H.akashiwo samples, which were assayed with both the RFQ-PCR method and visual count under microscope.展开更多
Objective:To compare the effects of clinical application of chemiluminescence and real-time,fluorescence-based quantitative PCR in the detection Epstein-Barr virus(EBV).Methods:The data of chemiluminescence and real-t...Objective:To compare the effects of clinical application of chemiluminescence and real-time,fluorescence-based quantitative PCR in the detection Epstein-Barr virus(EBV).Methods:The data of chemiluminescence and real-time fluorescent quantitative PCR.fromipaEsfwo were suspected of being infectea w1tn rito1 roro January 2016 to January 2019 in our hospital were analyzed.The specific stage of EBV infection was analyzed,and the differences in results of the two detection methods were compared.Results:Chemiluminescence method was used to detect EBV infection during the active phase.The sensitivity of the chemiluminescence method was 76.7%(56/73)and the real-time quantitative PCRmethod was 90.4%(66/73).There was a statistical difference between the two detection methods(P<0.05).Conclusion:There was no statistical difference in positive predictive values between the chemiluminescence method and the real-time,fluorescence-based quantitative PCR method in the detection of EBV infection,but the sensitivity of chemiluminescence method is slightly lower than the real-time quantitative PCRmethod.It is noteworthy that chemiluminescence method is convenient and fast while the real-time,fluorescence-based quantitative PCR method is more accurate,which can provide a more accurate reference for clinical treatment.展开更多
Objective To establish a TaqMan real-time fluorescent quantitative PCR to detect Vibrio vulnificus based on the hemolysin gene (vvhA) coding cytolysin. Methods Primers and probes in the conserved region of the vvhA ...Objective To establish a TaqMan real-time fluorescent quantitative PCR to detect Vibrio vulnificus based on the hemolysin gene (vvhA) coding cytolysin. Methods Primers and probes in the conserved region of the vvhA gene sequence were designed for the TaqMan real-time PCR to detect 100 bp amplicon from V. vulnificus DNA. Recombinant plasmid pMD19-vvhA100 was constructed and used as a positive control during the detection. Minimal amplification cycles (Ct value) and fluorescence intensity enhancement (ARn value) were used as observing indexes to optimize the reaction conditions of TaqMan real-time PCR. The TaqMan assay for the detection of Vbirio vulnificus was evaluated in pure culture, mice tissue which artificially contaminated Vibrio vulnificus and clinical samples. Results The established TaqMan real-time PCR showed positive results only for Vibrio vulnificus DNA and pMD19-vvhA100. The standard curve was plotted and the minimum level of the vvhA target from the recombinant plasmid DNA was 103 copies with a Ct value of 37.94±0.19, as the equivalent of 0.01 ng purified genomic DNA of Vibrio vulnificus. The results detected by TaqMan PCR were positive for the 16 clinical samples and all the specimens of peripheral blood and subcutaneous tissue of mice which were infected with Vibrio vulnificus. Conclusion TaqMan real-time PCR is a rapid, effective, and quantitative tool to detect Vibro vulnificus, and can be used in clinical laboratory diagnosis of septicemia and wound infection caused by Vibrio vulnificus.展开更多
文摘AIM: To develop a real-time PCR for detecting hepatitis B virus-(HBV) DNA based on TaqMan technology using a new MGB probe.METHODS: Plasmid containing the sequence of X gene (1414-1744 nt) was constructed as HBV-DNA standard for quantitative analysis. A TaqMan-MGB probe between primers for amplification was designed to detect PCR products. The interested sequence contained in the plasmid and in clinical specimens was quantitatively measured.RESULTS: The detection limit of the assay for HBV DNA was 1 genome equivalent per reaction. A linear standard curve was obtained between 100 and 109 DNA copies/reaction (r>0.990). None of the negative control samples showed false-positive reactions in duplicate. HBV DNA was detected in 100% (50/50) of HBV patients with HbeAg, and in 72.0% (36/50) with HBsAg, HBeAb and HBcAb. The coefficient of variation for both intra- and inter-experimental variability demonstrated high reproducibility and accuracy.CONCLUSION: Real-time PCR based on TaqMan-MGB probe technology is an excellent method for detection of HBV DNA.
基金Supported by the National Natural Science Foundation of China(No. 30371328), the Key Project of Natural Science Foundationof Shandong Province (No. Z2002C01), and the Key Project ofShandong Academy of Medical Sciences (No. 2005007)
文摘AIM: To rapidly quantify hepatitis B virus (HBV) DNA by real-time PCR using efficient TaqMan probe and extraction methods of virus DNA. METHODS: Three standards were prepared by cloning PCR products which targeted S, C and X region of HBV genome into pGEM-T vector respectively. A pair of primers and matched TaqMan probe were selected by comparing the copy number and the Ct values of HBV serum samples derived from the three different standard curves using certain serum DNA. Then the efficiency of six HBV DNA extraction methods including guanidinium isothiocyanate, proteinase K, NaI, NaOH lysis, alkaline lysis and simple boiling was analyzed in sample A, B and C by real-time PCR. Meanwhile, 8 clinical HBV serum samples were quantified. RESULTS: The copy number of the same HBV serum sample originated from the standard curve of S, C and X regions was 5.7 × 10^4/mL, 6.3 × 10^2/mL and 1.6 × 10^3/ mL respectively. The relative Ct value was 26.6, 31.8 and 29.5 respectively. Therefore, primers and matched probe from S region were chosen for further optimization of six extraction methods. The copy number of HBV serum samples A, B and C was 3.49 × 10^9/mL, 2.08 × 10^6/mL and 4.40 × 10^7/mL respectively, the relative Ct value was 19.9, 30 and 26.2 in the method of NaOH lysis, which was the efficientest among six methods. Simple boiling showed a slightly lower efficiency than NaOH lysis. Guanidinium isothiocyanate, proteinase K and NaI displayed that the copy number of HBV serum sample A, B and C was around 10^S/mL, meanwhile the Ct value was about 30. Alkaline failed to quantify the copy number of three HBV serum samples. Standard deviation (SD) and coefficient variation (CV) were very low in all 8 clinical HBV serum samples, showing that quantification of HBV DNA in triplicate was reliable and accurate. CONCLUSION: Real-time PCR based on optimized primers and TaqMan probe from S region in combination with NaOH lysis is a simple, rapid and accurate method for quantification of HBV serum DNA.
文摘To rapidly detect the harmful algae H.akashiwo qualitatively and quantitatively, sequences of the 18S rDNA deduced from H.akashiwo were used for designing species-specific primers, and a RFQ-PCR (Real-time Fluorescent Quantitative Polymerase Chain Reaction) method was developed for quantitative detection of H.akashiwo. Primer H.akashiwo and TaqMan probe were designed, and the specificity of primer was checked with PCR. A calibration curve was constructed with cycle threshold value against visual counted cell number. And the value of the curve was tested with other H.akashiwo samples, which were assayed with both the RFQ-PCR method and visual count under microscope.
文摘Objective:To compare the effects of clinical application of chemiluminescence and real-time,fluorescence-based quantitative PCR in the detection Epstein-Barr virus(EBV).Methods:The data of chemiluminescence and real-time fluorescent quantitative PCR.fromipaEsfwo were suspected of being infectea w1tn rito1 roro January 2016 to January 2019 in our hospital were analyzed.The specific stage of EBV infection was analyzed,and the differences in results of the two detection methods were compared.Results:Chemiluminescence method was used to detect EBV infection during the active phase.The sensitivity of the chemiluminescence method was 76.7%(56/73)and the real-time quantitative PCRmethod was 90.4%(66/73).There was a statistical difference between the two detection methods(P<0.05).Conclusion:There was no statistical difference in positive predictive values between the chemiluminescence method and the real-time,fluorescence-based quantitative PCR method in the detection of EBV infection,but the sensitivity of chemiluminescence method is slightly lower than the real-time quantitative PCRmethod.It is noteworthy that chemiluminescence method is convenient and fast while the real-time,fluorescence-based quantitative PCR method is more accurate,which can provide a more accurate reference for clinical treatment.
文摘Objective To establish a TaqMan real-time fluorescent quantitative PCR to detect Vibrio vulnificus based on the hemolysin gene (vvhA) coding cytolysin. Methods Primers and probes in the conserved region of the vvhA gene sequence were designed for the TaqMan real-time PCR to detect 100 bp amplicon from V. vulnificus DNA. Recombinant plasmid pMD19-vvhA100 was constructed and used as a positive control during the detection. Minimal amplification cycles (Ct value) and fluorescence intensity enhancement (ARn value) were used as observing indexes to optimize the reaction conditions of TaqMan real-time PCR. The TaqMan assay for the detection of Vbirio vulnificus was evaluated in pure culture, mice tissue which artificially contaminated Vibrio vulnificus and clinical samples. Results The established TaqMan real-time PCR showed positive results only for Vibrio vulnificus DNA and pMD19-vvhA100. The standard curve was plotted and the minimum level of the vvhA target from the recombinant plasmid DNA was 103 copies with a Ct value of 37.94±0.19, as the equivalent of 0.01 ng purified genomic DNA of Vibrio vulnificus. The results detected by TaqMan PCR were positive for the 16 clinical samples and all the specimens of peripheral blood and subcutaneous tissue of mice which were infected with Vibrio vulnificus. Conclusion TaqMan real-time PCR is a rapid, effective, and quantitative tool to detect Vibro vulnificus, and can be used in clinical laboratory diagnosis of septicemia and wound infection caused by Vibrio vulnificus.