A large number of logistics operations are needed to transport fabric rolls and dye barrels to different positions in printing and dyeing plants, and increasing labor cost is making it difficult for plants to recruit ...A large number of logistics operations are needed to transport fabric rolls and dye barrels to different positions in printing and dyeing plants, and increasing labor cost is making it difficult for plants to recruit workers to complete manual operations. Artificial intelligence and robotics, which are rapidly evolving, offer potential solutions to this problem. In this paper, a navigation method dedicated to solving the issues of the inability to pass smoothly at corners in practice and local obstacle avoidance is presented. In the system, a Gaussian fitting smoothing rapid exploration random tree star-smart(GFS RRT^(*)-Smart) algorithm is proposed for global path planning and enhances the performance when the robot makes a sharp turn around corners. In local obstacle avoidance, a deep reinforcement learning determiner mixed actor critic(MAC) algorithm is used for obstacle avoidance decisions. The navigation system is implemented in a scaled-down simulation factory.展开更多
由于果蔬采摘环境的不确定性和复杂性,机械臂在复杂环境中完成采摘,其路径规划需考虑实时避障。为实现采摘机械臂在不确定环境下安全采摘,提出一种改进RRT的动态避障算法,以提升机械臂在不确定采摘环境的适应性。针对基本快速扩展随机...由于果蔬采摘环境的不确定性和复杂性,机械臂在复杂环境中完成采摘,其路径规划需考虑实时避障。为实现采摘机械臂在不确定环境下安全采摘,提出一种改进RRT的动态避障算法,以提升机械臂在不确定采摘环境的适应性。针对基本快速扩展随机树算法(Rapidly-exploring Random Trees,RRT)在动态环境下迭代时间长、路径长、适应性差等问题,在RRT算法的基础上,引入目标导向策略,把终点以一定概率作为随机采样点的采样方向,提高算法的迭代效率;引入动态检测机制,对已完成规划的初始路径进行实时检测,使算法适应动态变化的环境。通过仿真分析改进RRT算法,结果表明:改进RRT算法的路径减少16%,迭代时间缩短86.5%;同时,动态检测机制使算法适应动态环境。展开更多
针对RRT(rapidly-exploring random tree)路径规划算法在高维空间的机械臂避障路径规划时随机产生巨量节点,导致算法运行负担大、避障性能差、容易陷入局部极值的问题,提出一种结合A^(*)判断函数的改进RRT算法。对RRT的采样方式进行更改...针对RRT(rapidly-exploring random tree)路径规划算法在高维空间的机械臂避障路径规划时随机产生巨量节点,导致算法运行负担大、避障性能差、容易陷入局部极值的问题,提出一种结合A^(*)判断函数的改进RRT算法。对RRT的采样方式进行更改,每次生成一个包含多个随机采样点的序列,并利用改进的A^(*)判断函数进行排序;对每次生成节点进行距离判断,防止陷入局部搜索;利用重复贪心策略删除冗余节点,利用三次B样条平滑路径。在二维、三维地图及机械臂仿真与样机实验中进行算法性能分析,改进RRT算法能够大量减少到达目标位姿时产生的节点,缓解了局部极值,快速稳定地避开障碍物并到达目标位姿,证明了改进RRT算法的有效性和优越性。展开更多
为解决快速扩展随机树算法(rapid-exploration random tree,RRT*)在三维环境中盲目搜索路径以及缺乏节点扩展记忆性等问题,提出一种融合蚁群算法的双向搜索算法ACO-RRT*。为适应精细化三维建模环境和解决地面起伏不平坦等问题,对RRT*算...为解决快速扩展随机树算法(rapid-exploration random tree,RRT*)在三维环境中盲目搜索路径以及缺乏节点扩展记忆性等问题,提出一种融合蚁群算法的双向搜索算法ACO-RRT*。为适应精细化三维建模环境和解决地面起伏不平坦等问题,对RRT*算法进行改进优化。采用双向搜索策略,在起点和终点同时运行改进后的RRT算法和蚁群算法,相向而行,对路径长度和运行时间进行优化。针对生成路径不够平滑等问题,引入B样条曲线平滑策略优化路径。仿真结果表明,所提算法能够有效用于机器人三维路径规划。展开更多
基金National Natural Science Foundation of China (No.61903078)。
文摘A large number of logistics operations are needed to transport fabric rolls and dye barrels to different positions in printing and dyeing plants, and increasing labor cost is making it difficult for plants to recruit workers to complete manual operations. Artificial intelligence and robotics, which are rapidly evolving, offer potential solutions to this problem. In this paper, a navigation method dedicated to solving the issues of the inability to pass smoothly at corners in practice and local obstacle avoidance is presented. In the system, a Gaussian fitting smoothing rapid exploration random tree star-smart(GFS RRT^(*)-Smart) algorithm is proposed for global path planning and enhances the performance when the robot makes a sharp turn around corners. In local obstacle avoidance, a deep reinforcement learning determiner mixed actor critic(MAC) algorithm is used for obstacle avoidance decisions. The navigation system is implemented in a scaled-down simulation factory.
文摘由于果蔬采摘环境的不确定性和复杂性,机械臂在复杂环境中完成采摘,其路径规划需考虑实时避障。为实现采摘机械臂在不确定环境下安全采摘,提出一种改进RRT的动态避障算法,以提升机械臂在不确定采摘环境的适应性。针对基本快速扩展随机树算法(Rapidly-exploring Random Trees,RRT)在动态环境下迭代时间长、路径长、适应性差等问题,在RRT算法的基础上,引入目标导向策略,把终点以一定概率作为随机采样点的采样方向,提高算法的迭代效率;引入动态检测机制,对已完成规划的初始路径进行实时检测,使算法适应动态变化的环境。通过仿真分析改进RRT算法,结果表明:改进RRT算法的路径减少16%,迭代时间缩短86.5%;同时,动态检测机制使算法适应动态环境。
文摘针对RRT(rapidly-exploring random tree)路径规划算法在高维空间的机械臂避障路径规划时随机产生巨量节点,导致算法运行负担大、避障性能差、容易陷入局部极值的问题,提出一种结合A^(*)判断函数的改进RRT算法。对RRT的采样方式进行更改,每次生成一个包含多个随机采样点的序列,并利用改进的A^(*)判断函数进行排序;对每次生成节点进行距离判断,防止陷入局部搜索;利用重复贪心策略删除冗余节点,利用三次B样条平滑路径。在二维、三维地图及机械臂仿真与样机实验中进行算法性能分析,改进RRT算法能够大量减少到达目标位姿时产生的节点,缓解了局部极值,快速稳定地避开障碍物并到达目标位姿,证明了改进RRT算法的有效性和优越性。
文摘为解决快速扩展随机树算法(rapid-exploration random tree,RRT*)在三维环境中盲目搜索路径以及缺乏节点扩展记忆性等问题,提出一种融合蚁群算法的双向搜索算法ACO-RRT*。为适应精细化三维建模环境和解决地面起伏不平坦等问题,对RRT*算法进行改进优化。采用双向搜索策略,在起点和终点同时运行改进后的RRT算法和蚁群算法,相向而行,对路径长度和运行时间进行优化。针对生成路径不够平滑等问题,引入B样条曲线平滑策略优化路径。仿真结果表明,所提算法能够有效用于机器人三维路径规划。