An efficient high-order numerical method for supersonic reactive flows is proposed in this article.The reactive source term and convection term are solved separately by splitting scheme.In the reaction step,an adaptiv...An efficient high-order numerical method for supersonic reactive flows is proposed in this article.The reactive source term and convection term are solved separately by splitting scheme.In the reaction step,an adaptive time-step method is presented,which can improve the efficiency greatly.In the convection step,a third-order accurate weighted essentially non-oscillatory(WENO)method is adopted to reconstruct the solution in the unstructured grids.Numerical results show that our new method can capture the correct propagation speed of the detonation wave exactly even in coarse grids,while high order accuracy can be achieved in the smooth region.In addition,the proposed adaptive splitting method can reduce the computational cost greatly compared with the traditional splitting method.展开更多
A multi-relaxation-time discrete Boltzmann model(DBM) with split collision is proposed for both subsonic and supersonic compressible reacting flows, where chemical reactions take place among various components. The ph...A multi-relaxation-time discrete Boltzmann model(DBM) with split collision is proposed for both subsonic and supersonic compressible reacting flows, where chemical reactions take place among various components. The physical model is based on a unified set of discrete Boltzmann equations that describes the evolution of each chemical species with adjustable acceleration, specific heat ratio, and Prandtl number. On the right-hand side of discrete Boltzmann equations, the collision,force, and reaction terms denote the change rates of distribution functions due to self-and crosscollisions, external forces, and chemical reactions, respectively. The source terms can be calculated in three ways, among which the matrix inversion method possesses the highest physical accuracy and computational efficiency. Through Chapman-Enskog analysis, it is proved that the DBM is consistent with the reactive Navier-Stokes equations, Fick's law and the Stefan-Maxwell diffusion equation in the hydrodynamic limit. Compared with the one-step-relaxation model, the split collision model offers a detailed and precise description of hydrodynamic, thermodynamic, and chemical nonequilibrium effects. Finally, the model is validated by six benchmarks, including multicomponent diffusion, mixture in the force field, Kelvin-Helmholtz instability, flame at constant pressure, opposing chemical reaction, and steady detonation.展开更多
This research focuses on the Cattaneo-Christov theory of heat and mass flux for a three-dimensional Maxwell liquid towards a moving surface. An incompressible laminar flow with variable thermal conductivity is conside...This research focuses on the Cattaneo-Christov theory of heat and mass flux for a three-dimensional Maxwell liquid towards a moving surface. An incompressible laminar flow with variable thermal conductivity is considered. The flow generation is due to the bidirectional stretching of sheet. The combined phenomenon of heat and mass transport is accounted. The Cattaneo-Christov model of heat and mass diffusion is used to develop the expressions of energy and mass species. The first-order chemical reaction term in the mass species equation is considered. The boundary layer assumptions lead to the governing mathematical model. The homotopic simulation is adopted to visualize the results of the dimensionless flow equations. The graphs of velocities, temperature, and concentration show the effects of different arising parameters. A numerical benchmark is presented to visualize the convergent values of the computed results. The results show that the concentration and temperature fields are decayed for the Cattaneo^Christov theory of heat and mass diffusion.展开更多
For compressible reactive flows with stiff source terms,a new block-based adaptive multi-resolution method coupled with the adaptive multi-resolution representation model for ZND detonation and a conservative front ca...For compressible reactive flows with stiff source terms,a new block-based adaptive multi-resolution method coupled with the adaptive multi-resolution representation model for ZND detonation and a conservative front capturing method based on a level-set technique is presented.When simulating stiff reactive flows,underresolution in space and time can lead to incorrect propagation speeds of discontinuities,and numerical dissipation makes it impossible for traditional shock-capturing methods to locate the detonation front.To solve these challenges,the proposed method leverages an adaptive multi-resolution representation model to separate the scales of the reaction from those of fluid dynamics,achieving both high-resolution solutions and high efficiency.A level set technique is used to capture the detonation front sharply and reduce errors due to the inaccurate prediction of detonation speed.In order to ensure conservation,a conservative modified finite volume scheme is implemented,and the front transition fluxes are calculated by considering a Riemann problem.A series of numerical examples of stiff detonation simulations are performed to illustrate that the present method can acquire the correct propagation speed and accurately capture the sharp detonation front.Comparative numerical results also validate the approach’s benefits and excellent performance.展开更多
Power flow calculation is the basis of power grid planning and many system analysis tasks require convergent power flow conditions.To address the unsolvable power flow problem caused by the reactive power imbalance,a ...Power flow calculation is the basis of power grid planning and many system analysis tasks require convergent power flow conditions.To address the unsolvable power flow problem caused by the reactive power imbalance,a method for adjusting reactive power flow convergence based on deep reinforcement learning is proposed.The deep reinforcement learning method takes switching parallel reactive compensation as the action space and sets the reward value based on the power flow convergence and reactive power adjustment.For the non-convergence power flow,the 500 kV nodes with reactive power compensation devices on the low-voltage side are converted into PV nodes by node type switching.And the quantified reactive power non-convergence index is acquired.Then,the action space and reward value of deep reinforcement learning are reasonably designed and the adjustment strategy is obtained by taking the reactive power non-convergence index as the algorithm state space.Finally,the effectiveness of the power flow convergence adjustment algorithm is verified by an actual power grid system in a province.展开更多
Objective:To determine the relations between endothelium-dependent vasodilator function and blood flow in the brachial and coronary arteries in patients with suspected coronary artery disease.Methods:Twenty-eight pati...Objective:To determine the relations between endothelium-dependent vasodilator function and blood flow in the brachial and coronary arteries in patients with suspected coronary artery disease.Methods:Twenty-eight patients with suspected coronary artery disease underwent brachial artery endothelial function test by using high-resolution B-mode ultrasound before coronary angiography(CAG)and coronary flow reserve(CFR)test by using intracoronary Doppler technique.The correlation of coronary artery dilatation induced by an increase in blood flow after intracoronary adenosine infusion and brachial artery flow-mediated dilatation(FMD) following reactive hyperemia was evaluated.The relation between the change of brachial artery blood flow and CFR was also studied.Results:There was a positive correlation between brachial FMD and percent change of coronary diameter after adenosine infusion(12.50%±9.35% vs 11.38%±7.55%,r=0.425,P=0.02).There was also a weak negative relation between brachial flow change following reactive hy-peremia and CFR(r=-0.397,P=0.04).Conclusion:There is a correlation between the coronary endo-thelial function and the CFR by ultrasonic determination of brachial flow changes following reactive hyperemia.展开更多
This work mainly studies the effect of fluid phase momentum transfer mechanisms on the acidizing results,including the retardation effect of the porous structure and the interaction between the fluid phase,such as vis...This work mainly studies the effect of fluid phase momentum transfer mechanisms on the acidizing results,including the retardation effect of the porous structure and the interaction between the fluid phase,such as viscous dissipation and inertial effect.The results show that the acid fluid momentum transfer is influenced by the complex porous structure and fluid viscous dissipation.Eventually,the Stokes-Darcy equation is recommended to be adopted to describe the fluid phase momentum transfer in the following numerical simulation studies of the carbonate acidizing process.Based on this model,a parametric research is carried out to investigate the impact of acid on rock physical characteristics in the stimulation process.Increasing the acid concentration appears to minimize the quantity of acid consumed for the breakthrough.The acid surface reaction rate has a considerable impact on the pore volume to breakthrough and the optimum acid injection rate.The influence of permeability on the acidizing results basically shows a negative correlation with the injection rate.The difference between the acidizing curves of different permeability gradually becomes insignificant with the decrease in injection rate.The existence of isolated fracture and vug significantly reduces acid consumption for the breakthrough.展开更多
The aim of this article is to study the effective behavior of the solution of a nonlinear problem arising in the modelling of enzyme catalyzed reactions through the exterior of a domain containing periodically distrib...The aim of this article is to study the effective behavior of the solution of a nonlinear problem arising in the modelling of enzyme catalyzed reactions through the exterior of a domain containing periodically distributed reactive solid obstacles,with period ε.The asymptotic behavior of the solution of such a problem is governed by a new elliptic boundary-value problem,with an extra zero-order term that captures the effect of the enzymatic reactions.展开更多
In this paper,wave and vibratory power transmission in a finite L-shaped Mindlin plate with two simply supported opposite edges are investigated using the wave approach.The dynamic responses,active and reactive power ...In this paper,wave and vibratory power transmission in a finite L-shaped Mindlin plate with two simply supported opposite edges are investigated using the wave approach.The dynamic responses,active and reactive power flow in the finite plate are calculated by the Mindlin plate theory (MPT) and classic plate theory (CPT).To satisfy the boundary conditions and continuous conditions at the coupled junction of the finite L-shaped plate,the near-field and far-field waves are entirely contained in the wave approach.The in-plane longitudinal and shear waves are also considered.The results indicate that the vibratory power flow based on the MPT is different from that based on the CPT not only at high frequencies but also at low and medium frequencies.The influence of the plate thickness on the vibrational power flow is investigated.From the results it is seen that the shear and rotary inertia correction of the MPT can influence the active and reactive power at the junction of the L-shaped plate not only at high frequencies but also at low and medium frequencies.Furthermore,the effects of structural damping on the active and reactive power flow at the junction are also analyzed.展开更多
This paper analyzes the physical meaning of the active and reactive power flow in the finite L-shaped beams and studies the active vibration control of the structures based on the active and reactive power flow.The tr...This paper analyzes the physical meaning of the active and reactive power flow in the finite L-shaped beams and studies the active vibration control of the structures based on the active and reactive power flow.The traveling wave approach is used to calculate the structural dynamic responses.Because the error of control force is inevitable in practical applications,the effects of the error of control force on the control results are studied.The study indicates that the error of control force has pronounced influence on the control results of the acceleration and reactive power flow.It is obvious that the reactive power flow can represent the vibration strength component of the complex intensity,and the active power flow strongly depends on the structural damping of the finite beams.展开更多
Addressed to the N-k_(1)-k_(2) cascading outages,it is computationally burdensome for the reliable calculation of active and reactive power flows.This paper builds a comprehensive framework with three algorithms,inclu...Addressed to the N-k_(1)-k_(2) cascading outages,it is computationally burdensome for the reliable calculation of active and reactive power flows.This paper builds a comprehensive framework with three algorithms,including the distribution factor(DF),the Newton-Raphson(NR),and the first iteration of NR algorithm(termed as 1J).Classifiers are designed to determine whether the NR algorithm should be employed for accuracy.Classifier features are extracted upon the analytical error of 1J.As reactive power is partially considered in the 1J but neglected in the DF algorithm,the deviation between the solutions is taken as one crucial feature.The support vector machine(SVM)is then utilized for classifier training.As the deep integration of the causal inference and the statistical paradigm,this framework calculates active and reactive power flows rapidly,reliably,and robustly.The effectiveness and robustness are fully validated in three typical IEEE systems.展开更多
Therapeutic hypothermia is the most promising non-pharmacological neuroprotective strategy against ischemic injury. However, shivering is the most common adverse reaction. Many studies have shown that dantrolene is ne...Therapeutic hypothermia is the most promising non-pharmacological neuroprotective strategy against ischemic injury. However, shivering is the most common adverse reaction. Many studies have shown that dantrolene is neuroprotective in in vitro and in vivo ischemic injury models. In addition to its neuroprotective effect, dantrolene neutralizes the adverse reaction of hypothermia. Dantrolene may be an effective adjunctive therapy to enhance the neuroprotection of hypothermia in treating ischemic stroke. Cortical neurons isolated from rat fetuses were exposed to 90 minutes of oxygen-glucose deprivation followed by reoxygenation. Neurons were treated with 40 μM dantrolene, hypothermia(at 33°C), or the combination of both for 12 hours. Results revealed that the combination of dantrolene and hypothermia increased neuronal survival and the mitochondrial membrane potential, and reduced intracellular active oxygen cytoplasmic histone-associated DNA fragmentation, and apoptosis. Furthermore, improvements in cell morphology were observed. The combined treatment enhanced these responses compared with either treatment alone. These findings indicate that dantrolene may be used as an effective adjunctive therapy to enhance the neuroprotective effects of hypothermia in ischemic stroke.展开更多
We review recent developments in lattice Boltzmann method for reacting flows in porous media.We present the lattice Boltzmann approaches for incompressible flow,solute transport and chemical reactions in both the pore...We review recent developments in lattice Boltzmann method for reacting flows in porous media.We present the lattice Boltzmann approaches for incompressible flow,solute transport and chemical reactions in both the pore space and at the fluid/solid interfaces.We discuss in detail the methods to update solid phase when significant mass transfer between solids and fluids is involved due to dissolution and/or precipitation.Applications in different areas are presented and perspectives of applying this method to a few important fields are discussed.展开更多
We present multicomponent flow models derived from the kinetic theory of gases and investigate the symmetric hyperbolic-parabolic structure of the resulting system of partial differential equations. We address the Cau...We present multicomponent flow models derived from the kinetic theory of gases and investigate the symmetric hyperbolic-parabolic structure of the resulting system of partial differential equations. We address the Cauchy problem for smooth solutions as well as the existence of deflagration waves, also termed anchored waves. We further discuss related models which have a similar hyperbolic-parabolic structure, notably the Saint- Venant system with a temperature equation as well as the equations governing chemical equilibrium flows. We next investigate multicomponent ionized and magnetized flow models with anisotropic transport fluxes which have a different mathematical structure. We finally discuss numerical algorithms specifically devoted to complex chemistry flows, in particular the evaluation of multicomponent transport properties, as well as the impact of multicomponent transport.展开更多
A simple method of detonation transmission from a small tube to a large area is presented.This technique involves placing obstacles which create slight blockages at the exit of the confined tube before the planar deto...A simple method of detonation transmission from a small tube to a large area is presented.This technique involves placing obstacles which create slight blockages at the exit of the confined tube before the planar detonation emerges into the larger space,thereby generating flow instability to promote the detonation transmission.In this experimental study two mixtures of undiluted stoichiometric acetylene-oxygen and acetylene-nitrous oxide are examined.These mixtures can be characterized by a cellular detonation front that is irregular and representative of those potentially used in practical aerospace applications.The blockage ratio imposed by the obstacles is varied systematically to identify the optimal condition under which a significant reduction in critical pressure for transmission can be obtained.A new perturbation configuration for practical use in propulsion and power systems is also introduced and results are in good agreement with those obtained using thin needles as the blockage ratio is kept constant.展开更多
In this paper,we consider a class of non-Newtonian fluids for a reacting mixture in one-dimensional bounded interval, provided the initial data satisfying a compatibility condition. The main ingredient is that we allo...In this paper,we consider a class of non-Newtonian fluids for a reacting mixture in one-dimensional bounded interval, provided the initial data satisfying a compatibility condition. The main ingredient is that we allow the initial density vacuum.展开更多
基金supported by the National Natural Science Foundation of China(Grants 51476152,11302213,and 11572336)
文摘An efficient high-order numerical method for supersonic reactive flows is proposed in this article.The reactive source term and convection term are solved separately by splitting scheme.In the reaction step,an adaptive time-step method is presented,which can improve the efficiency greatly.In the convection step,a third-order accurate weighted essentially non-oscillatory(WENO)method is adopted to reconstruct the solution in the unstructured grids.Numerical results show that our new method can capture the correct propagation speed of the detonation wave exactly even in coarse grids,while high order accuracy can be achieved in the smooth region.In addition,the proposed adaptive splitting method can reduce the computational cost greatly compared with the traditional splitting method.
基金supported by the National Natural Science Foundation of China(under Grant Nos. U2242214, 51806116 and 91441120)the Guangdong Basic and Applied Basic Research Foundation (under Grant Nos. 2022A1515012116and 2024A1515010927)+3 种基金the Natural Science Foundation of Fujian Province(under Grant Nos. 2021J01652, 2021J01655)the China Scholarship Council (No. 202306380288)partly supported by the Open Research Fund of Key Laboratory of Analytical Mathematics and Applications(Fujian Normal University),Ministry of Education,ChinaSupport from the UK Engineering and Physical Sciences Research Council under the project ‘UK Consortium on Mesoscale Engineering Sciences (UKCOMES)’(Grant No. EP/X035875/1) is gratefully acknowledged。
文摘A multi-relaxation-time discrete Boltzmann model(DBM) with split collision is proposed for both subsonic and supersonic compressible reacting flows, where chemical reactions take place among various components. The physical model is based on a unified set of discrete Boltzmann equations that describes the evolution of each chemical species with adjustable acceleration, specific heat ratio, and Prandtl number. On the right-hand side of discrete Boltzmann equations, the collision,force, and reaction terms denote the change rates of distribution functions due to self-and crosscollisions, external forces, and chemical reactions, respectively. The source terms can be calculated in three ways, among which the matrix inversion method possesses the highest physical accuracy and computational efficiency. Through Chapman-Enskog analysis, it is proved that the DBM is consistent with the reactive Navier-Stokes equations, Fick's law and the Stefan-Maxwell diffusion equation in the hydrodynamic limit. Compared with the one-step-relaxation model, the split collision model offers a detailed and precise description of hydrodynamic, thermodynamic, and chemical nonequilibrium effects. Finally, the model is validated by six benchmarks, including multicomponent diffusion, mixture in the force field, Kelvin-Helmholtz instability, flame at constant pressure, opposing chemical reaction, and steady detonation.
文摘This research focuses on the Cattaneo-Christov theory of heat and mass flux for a three-dimensional Maxwell liquid towards a moving surface. An incompressible laminar flow with variable thermal conductivity is considered. The flow generation is due to the bidirectional stretching of sheet. The combined phenomenon of heat and mass transport is accounted. The Cattaneo-Christov model of heat and mass diffusion is used to develop the expressions of energy and mass species. The first-order chemical reaction term in the mass species equation is considered. The boundary layer assumptions lead to the governing mathematical model. The homotopic simulation is adopted to visualize the results of the dimensionless flow equations. The graphs of velocities, temperature, and concentration show the effects of different arising parameters. A numerical benchmark is presented to visualize the convergent values of the computed results. The results show that the concentration and temperature fields are decayed for the Cattaneo^Christov theory of heat and mass diffusion.
基金the National Natural Science Foundation of China under Grants No.12102052,No.11871113 and No.12171049.
文摘For compressible reactive flows with stiff source terms,a new block-based adaptive multi-resolution method coupled with the adaptive multi-resolution representation model for ZND detonation and a conservative front capturing method based on a level-set technique is presented.When simulating stiff reactive flows,underresolution in space and time can lead to incorrect propagation speeds of discontinuities,and numerical dissipation makes it impossible for traditional shock-capturing methods to locate the detonation front.To solve these challenges,the proposed method leverages an adaptive multi-resolution representation model to separate the scales of the reaction from those of fluid dynamics,achieving both high-resolution solutions and high efficiency.A level set technique is used to capture the detonation front sharply and reduce errors due to the inaccurate prediction of detonation speed.In order to ensure conservation,a conservative modified finite volume scheme is implemented,and the front transition fluxes are calculated by considering a Riemann problem.A series of numerical examples of stiff detonation simulations are performed to illustrate that the present method can acquire the correct propagation speed and accurately capture the sharp detonation front.Comparative numerical results also validate the approach’s benefits and excellent performance.
基金This work was partly supported by the Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China,under Grant No.J2022095.
文摘Power flow calculation is the basis of power grid planning and many system analysis tasks require convergent power flow conditions.To address the unsolvable power flow problem caused by the reactive power imbalance,a method for adjusting reactive power flow convergence based on deep reinforcement learning is proposed.The deep reinforcement learning method takes switching parallel reactive compensation as the action space and sets the reward value based on the power flow convergence and reactive power adjustment.For the non-convergence power flow,the 500 kV nodes with reactive power compensation devices on the low-voltage side are converted into PV nodes by node type switching.And the quantified reactive power non-convergence index is acquired.Then,the action space and reward value of deep reinforcement learning are reasonably designed and the adjustment strategy is obtained by taking the reactive power non-convergence index as the algorithm state space.Finally,the effectiveness of the power flow convergence adjustment algorithm is verified by an actual power grid system in a province.
文摘Objective:To determine the relations between endothelium-dependent vasodilator function and blood flow in the brachial and coronary arteries in patients with suspected coronary artery disease.Methods:Twenty-eight patients with suspected coronary artery disease underwent brachial artery endothelial function test by using high-resolution B-mode ultrasound before coronary angiography(CAG)and coronary flow reserve(CFR)test by using intracoronary Doppler technique.The correlation of coronary artery dilatation induced by an increase in blood flow after intracoronary adenosine infusion and brachial artery flow-mediated dilatation(FMD) following reactive hyperemia was evaluated.The relation between the change of brachial artery blood flow and CFR was also studied.Results:There was a positive correlation between brachial FMD and percent change of coronary diameter after adenosine infusion(12.50%±9.35% vs 11.38%±7.55%,r=0.425,P=0.02).There was also a weak negative relation between brachial flow change following reactive hy-peremia and CFR(r=-0.397,P=0.04).Conclusion:There is a correlation between the coronary endo-thelial function and the CFR by ultrasonic determination of brachial flow changes following reactive hyperemia.
基金financial support from the Key Project of the National Natural Science Foundation of China(No.52034010)the China Scholarship Council(201906450038)
文摘This work mainly studies the effect of fluid phase momentum transfer mechanisms on the acidizing results,including the retardation effect of the porous structure and the interaction between the fluid phase,such as viscous dissipation and inertial effect.The results show that the acid fluid momentum transfer is influenced by the complex porous structure and fluid viscous dissipation.Eventually,the Stokes-Darcy equation is recommended to be adopted to describe the fluid phase momentum transfer in the following numerical simulation studies of the carbonate acidizing process.Based on this model,a parametric research is carried out to investigate the impact of acid on rock physical characteristics in the stimulation process.Increasing the acid concentration appears to minimize the quantity of acid consumed for the breakthrough.The acid surface reaction rate has a considerable impact on the pore volume to breakthrough and the optimum acid injection rate.The influence of permeability on the acidizing results basically shows a negative correlation with the injection rate.The difference between the acidizing curves of different permeability gradually becomes insignificant with the decrease in injection rate.The existence of isolated fracture and vug significantly reduces acid consumption for the breakthrough.
文摘The aim of this article is to study the effective behavior of the solution of a nonlinear problem arising in the modelling of enzyme catalyzed reactions through the exterior of a domain containing periodically distributed reactive solid obstacles,with period ε.The asymptotic behavior of the solution of such a problem is governed by a new elliptic boundary-value problem,with an extra zero-order term that captures the effect of the enzymatic reactions.
基金supported by the National Basic Research Programof China (2011CB711102)the National Natural Science Foundation of China (10672017,11002045)
文摘In this paper,wave and vibratory power transmission in a finite L-shaped Mindlin plate with two simply supported opposite edges are investigated using the wave approach.The dynamic responses,active and reactive power flow in the finite plate are calculated by the Mindlin plate theory (MPT) and classic plate theory (CPT).To satisfy the boundary conditions and continuous conditions at the coupled junction of the finite L-shaped plate,the near-field and far-field waves are entirely contained in the wave approach.The in-plane longitudinal and shear waves are also considered.The results indicate that the vibratory power flow based on the MPT is different from that based on the CPT not only at high frequencies but also at low and medium frequencies.The influence of the plate thickness on the vibrational power flow is investigated.From the results it is seen that the shear and rotary inertia correction of the MPT can influence the active and reactive power at the junction of the L-shaped plate not only at high frequencies but also at low and medium frequencies.Furthermore,the effects of structural damping on the active and reactive power flow at the junction are also analyzed.
基金supported by the National Natural Science Foundation of China (Grant Nos.10672017, 10632020 and 11002045)
文摘This paper analyzes the physical meaning of the active and reactive power flow in the finite L-shaped beams and studies the active vibration control of the structures based on the active and reactive power flow.The traveling wave approach is used to calculate the structural dynamic responses.Because the error of control force is inevitable in practical applications,the effects of the error of control force on the control results are studied.The study indicates that the error of control force has pronounced influence on the control results of the acceleration and reactive power flow.It is obvious that the reactive power flow can represent the vibration strength component of the complex intensity,and the active power flow strongly depends on the structural damping of the finite beams.
基金This work was supported by the China State Grid Corporation Project of the Key Technologies of Power Grid Proactive Support for Energy Transition(No.5100-202040325A-0-0-00).
文摘Addressed to the N-k_(1)-k_(2) cascading outages,it is computationally burdensome for the reliable calculation of active and reactive power flows.This paper builds a comprehensive framework with three algorithms,including the distribution factor(DF),the Newton-Raphson(NR),and the first iteration of NR algorithm(termed as 1J).Classifiers are designed to determine whether the NR algorithm should be employed for accuracy.Classifier features are extracted upon the analytical error of 1J.As reactive power is partially considered in the 1J but neglected in the DF algorithm,the deviation between the solutions is taken as one crucial feature.The support vector machine(SVM)is then utilized for classifier training.As the deep integration of the causal inference and the statistical paradigm,this framework calculates active and reactive power flows rapidly,reliably,and robustly.The effectiveness and robustness are fully validated in three typical IEEE systems.
基金supported by a grant from the Guangdong Science&Technology Plan Program in China,No.2014A020212043the a grant from the Shenzhen Science&Technology Plan Program in China,No.JCYJ20140414170821242+1 种基金the a grant from Shenzhen Collaborative Innovation Plan Program in China,No.GJHZ20120614154914623a grant from the Science&Technology Project of Shanxi Health and Family Planning Commission in China,No.201201060
文摘Therapeutic hypothermia is the most promising non-pharmacological neuroprotective strategy against ischemic injury. However, shivering is the most common adverse reaction. Many studies have shown that dantrolene is neuroprotective in in vitro and in vivo ischemic injury models. In addition to its neuroprotective effect, dantrolene neutralizes the adverse reaction of hypothermia. Dantrolene may be an effective adjunctive therapy to enhance the neuroprotection of hypothermia in treating ischemic stroke. Cortical neurons isolated from rat fetuses were exposed to 90 minutes of oxygen-glucose deprivation followed by reoxygenation. Neurons were treated with 40 μM dantrolene, hypothermia(at 33°C), or the combination of both for 12 hours. Results revealed that the combination of dantrolene and hypothermia increased neuronal survival and the mitochondrial membrane potential, and reduced intracellular active oxygen cytoplasmic histone-associated DNA fragmentation, and apoptosis. Furthermore, improvements in cell morphology were observed. The combined treatment enhanced these responses compared with either treatment alone. These findings indicate that dantrolene may be used as an effective adjunctive therapy to enhance the neuroprotective effects of hypothermia in ischemic stroke.
基金supported by LDRD project 20100025DRsponsored by Los Alamos National Laboratory and by UC Lab Fees Research Project UCD-09-15.
文摘We review recent developments in lattice Boltzmann method for reacting flows in porous media.We present the lattice Boltzmann approaches for incompressible flow,solute transport and chemical reactions in both the pore space and at the fluid/solid interfaces.We discuss in detail the methods to update solid phase when significant mass transfer between solids and fluids is involved due to dissolution and/or precipitation.Applications in different areas are presented and perspectives of applying this method to a few important fields are discussed.
文摘We present multicomponent flow models derived from the kinetic theory of gases and investigate the symmetric hyperbolic-parabolic structure of the resulting system of partial differential equations. We address the Cauchy problem for smooth solutions as well as the existence of deflagration waves, also termed anchored waves. We further discuss related models which have a similar hyperbolic-parabolic structure, notably the Saint- Venant system with a temperature equation as well as the equations governing chemical equilibrium flows. We next investigate multicomponent ionized and magnetized flow models with anisotropic transport fluxes which have a different mathematical structure. We finally discuss numerical algorithms specifically devoted to complex chemistry flows, in particular the evaluation of multicomponent transport properties, as well as the impact of multicomponent transport.
基金This work is supported by the Fonds de Recherche du Quebec Nature et Technologies。
文摘A simple method of detonation transmission from a small tube to a large area is presented.This technique involves placing obstacles which create slight blockages at the exit of the confined tube before the planar detonation emerges into the larger space,thereby generating flow instability to promote the detonation transmission.In this experimental study two mixtures of undiluted stoichiometric acetylene-oxygen and acetylene-nitrous oxide are examined.These mixtures can be characterized by a cellular detonation front that is irregular and representative of those potentially used in practical aerospace applications.The blockage ratio imposed by the obstacles is varied systematically to identify the optimal condition under which a significant reduction in critical pressure for transmission can be obtained.A new perturbation configuration for practical use in propulsion and power systems is also introduced and results are in good agreement with those obtained using thin needles as the blockage ratio is kept constant.
基金Supported by the National Natural Science Foundation of China(No.10971080,71501031,11401082)
文摘In this paper,we consider a class of non-Newtonian fluids for a reacting mixture in one-dimensional bounded interval, provided the initial data satisfying a compatibility condition. The main ingredient is that we allow the initial density vacuum.