期刊文献+
共找到37,188篇文章
< 1 2 250 >
每页显示 20 50 100
Dynamic modeling of minimum mass of pore-gas for triggering landslide in stable gentle soil slope
1
作者 Xingyu Kang Zhongqi Quentin Yue 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期652-670,共19页
This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a ... This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a dry cement powder core,a saturated clay middle layer,and a dry sand upper layer.The test injects H_(2)O_(2)solution into the cement core to produce new pore-gas.The model test includes three identical H_(2)O_(2)injections.The small mass of generated oxygen gas(0.07%of slope soil mass and landslide body)from the first injection can build sufficient pore-gas pressure to cause soil upheaval and slide.Meanwhile,despite the first injection causing leak paths in the clay layer,the generated small mass of gas from the second and third injections can further trigger the landslide.A dynamic theoretical analysis of the slope failure is carried out and the required minimum pore-gas pressure for the landslide is calculated.The mass and pressure of generated gas in the model test are also estimated based on the calibration test for oxygen generation from H_(2)O_(2)solution in cement powder.The results indicate that the minimum mass of the generated gas for triggering the landslide is 2 ppm to 0.07%of the landslide body.Furthermore,the small mass of gas can provide sufficient pressure to cause soil upheaval and soil sliding in dynamic analysis. 展开更多
关键词 LANDSLIDE Gentle soil slope Physical model test Minimum pore-gas mass Soil upheaval dynamic modeling
在线阅读 下载PDF
Dynamic modeling and simulation of blade-casing system with rubbing considering time-varying stiffness and mass of casing
2
作者 Hui MA Hong GUAN +4 位作者 Lin QU Xumin GUO Qinqin MU Yao ZENG Yanyan CHEN 《Applied Mathematics and Mechanics(English Edition)》 2025年第5期849-868,共20页
As a common fault of the aero-engine,the blade-casing rubbing(BCR)has the potential to cause catastrophic accidents.In this paper,to investigate the dynamic responses and wear characteristics of the system,the laminat... As a common fault of the aero-engine,the blade-casing rubbing(BCR)has the potential to cause catastrophic accidents.In this paper,to investigate the dynamic responses and wear characteristics of the system,the laminated shell element is used to establish the finite element model(FEM)of a flexibly coated casing system.Using the shell element,the blade is modeled,and the surface stress of the blade is calculated.The stress-solving method of the blade is validated through comparisons with the measured time-domain waveform of the stress.Then,a dynamic model of a blade-flexibly coated casing system with rubbing is proposed,accounting for the time-varying mass and stiffness of the casing caused by coating wear.The effects of the proposed flexible casing model are compared with those of a rigid casing model,and the stress changes induced by rubbing are investigated.The results show that the natural characteristics of the coated casing decrease due to the coating wear.The flexibly coated casing model is found to be more suitable for studying casing vibration.Additionally,the stress changes caused by rubbing are slight,and the change in the stress maximum is approximately 5%under the influence of the abrasive coating. 展开更多
关键词 dynamic modeling flexibly coated casing RUBBING coating wear nonlinear vibration
在线阅读 下载PDF
Dynamic modeling of a three-dimensional braided composite thin plate considering braiding directions
3
作者 Chentong GAO Huiyu SUN +1 位作者 Jianping GU W.M.HUANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期123-138,共16页
Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade compone... Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications. 展开更多
关键词 three-dimensional(3D)braided composite braiding direction composite thin plate large overall motion dynamic model
在线阅读 下载PDF
True triaxial modeling test of high-sidewall underground caverns subjected to dynamic disturbances
4
作者 Chuanqing Zhang Jinping Ye +3 位作者 Ning Liu Qiming Xie Mingming Hu Lingyu Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2109-2132,共24页
Seismicity resulting from the near-or in-field fault activation significantly affects the stability of large-scale underground caverns that are operating under high-stress conditions.A comprehensive scientific assessm... Seismicity resulting from the near-or in-field fault activation significantly affects the stability of large-scale underground caverns that are operating under high-stress conditions.A comprehensive scientific assessment of the operational safety of such caverns requires an in-depth understanding of the response characteristics of the rock mass subjected to dynamic disturbances.To address this issue,we conducted true triaxial modeling tests and dynamic numerical simulations on large underground caverns to investigate the impact of static stress levels,dynamic load parameters,and input directions on the response characteristics of the surrounding rock mass.The findings reveal that:(1)When subjected to identical incident stress waves and static loads,the surrounding rock mass exhibits the greatest stress response during horizontal incidence.When the incident direction is fixed,the mechanical response is more pronounced at the cavern wall parallel to the direction of dynamic loading.(2)A high initial static stress level specifically enhances the impact of dynamic loading.(3)The response of the surrounding rock mass is directly linked to the amplitude of the incident stress wave.High amplitude results in tensile damage in regions experiencing tensile stress concentration under static loading and shear damage in regions experiencing compressive stress concentration.These results have significant implications for the evaluation and prevention of dynamic disasters in the surrounding rock of underground caverns experiencing dynamic disturbances. 展开更多
关键词 High-sidewall underground cavern modeling test Coupling effect of dynamic and static loads Incident wave Response characteristics Risk coefficient
在线阅读 下载PDF
Study on the Dynamic Mechanical Damage Behavior of Concrete Based on the Phase-Field Model
5
作者 Zhishui Sheng Hong Jiang +2 位作者 Gang Liu Fulai Zhang Wei Zhang 《Structural Durability & Health Monitoring》 2025年第3期531-548,共18页
Concrete materials are employed extensively in a variety of large-scale structures due to their economic viability and superior mechanical properties.During the service life of concrete structures,they are inevitably ... Concrete materials are employed extensively in a variety of large-scale structures due to their economic viability and superior mechanical properties.During the service life of concrete structures,they are inevitably subjected to damage from impact loading from natural disasters,such as earthquakes and storms.In recent years,the phasefield model has demonstrated exceptional capability in predicting the stochastic initiation,propagation,and bifurcation of cracks in materials.This study employs a phase-field model to focus on the rate dependency and failure response of concrete under impact deformation.A viscosity coefficient is introduced within the phase-field model to characterize the viscous behavior of dynamic crack propagation in concrete.The rate-dependent cohesive strength is defined within the yield function of concrete,where the rate sensitivity of cohesive strength facilitates the accumulation of the plastic driving force in the phase-field model.This process effectively captures the impact failure response of concrete.The applicability of the model was validated through unit cell experiments and numerical simulations of concrete under impact compression.Furthermore,the mechanical response and damage evolution mechanisms of concrete under impact loading were analyzed.It was observed that crack propagation in concrete initiates at material defects and,with increasing load,eventually develops in a direction perpendicular to the loading axis. 展开更多
关键词 Impact loading phase-field model dynamic crack propagation rate-dependent elastoplastic constitutive model
在线阅读 下载PDF
Smart cities,smart systems:A comprehensive review of system dynamics model applications in urban studies in the big data era
6
作者 Gift Fabolude Charles Knoble +1 位作者 Anvy Vu Danlin Yu 《Geography and Sustainability》 2025年第1期25-36,共12页
This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models ... This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models offer insights, they fall short in presenting a holistic view of complex urban challenges. System dynamics (SD) models that are often utilized to provide holistic, systematic understanding of a research subject, like the urban system, emerge as valuable tools, but data scarcity and theoretical inadequacy pose challenges. The research reviews relevant papers on recent SD model applications in urban sustainability since 2018, categorizing them based on nine key indicators. Among the reviewed papers, data limitations and model assumptions were identified as ma jor challenges in applying SD models to urban sustainability. This led to exploring the transformative potential of big data analytics, a rare approach in this field as identified by this study, to enhance SD models’ empirical foundation. Integrating big data could provide data-driven calibration, potentially improving predictive accuracy and reducing reliance on simplified assumptions. The paper concludes by advocating for new approaches that reduce assumptions and promote real-time applicable models, contributing to a comprehensive understanding of urban sustainability through the synergy of big data and SD models. 展开更多
关键词 Urban sustainability Smart cities System dynamics models Big data analytics Urban system complexity Data-driven urbanism
在线阅读 下载PDF
Multi-scale Numerical Simulations for Crack Propagation in NiTi Shape Memory Alloys by Molecular Dynamics-based Cohesive Zone Model
7
作者 LI Yunfei WANG Yuancen HE Qinshu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期599-609,共11页
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ... The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity. 展开更多
关键词 NiTi shape memory alloys multi-scale numerical simulation crack propagation the cohesive zone model molecular dynamics simulation
在线阅读 下载PDF
Calculation of the carrier dynamics and impedance spectroscopy model in quantum well infrared photodetectors
8
作者 Chenzhe Hu Yuyu Bu +2 位作者 Xianying Dai Fengqiu Jiang Yue Hao 《Journal of Semiconductors》 2025年第3期89-95,共7页
Quantum well infrared photodetectors(QWIPs) based on intersubband transitions hold significant potential for high bandwidth operation. In this work, we establish a carrier transport optimization model incorporating el... Quantum well infrared photodetectors(QWIPs) based on intersubband transitions hold significant potential for high bandwidth operation. In this work, we establish a carrier transport optimization model incorporating electron injection at the emitter to investigate the carrier dynamics time and impedance spectroscopy in GaAs/AlGaAs QWIPs. Our findings provide novel evidence that the escape time of electrons is the key limiting factor for the 3-dB bandwidth of QWIPs. Moreover, to characterize the impact of carrier dynamics time and non-equilibrium space charge region on impedance, we developed an equivalent circuit model where depletion region resistance and capacitance are employed to describe non-equilibrium space charge region. Using this model, we discovered that under illumination, both net charge accumulation caused by variations in carrier dynamics times within quantum wells and changes in width of non-equilibrium space charge region exert different dominant influences on depletion region capacitance at various doping concentrations. 展开更多
关键词 quantum well infrared photodetectors(QWIPs) carrier dynamics time impedance spectroscopy equivalent circuit model 3-dB bandwidth
在线阅读 下载PDF
Scenario analysis of the Indonesia carbon tax impact on carbon emissions using system dynamics modeling and STIRPAT model 被引量:1
9
作者 Andewi Rokhmawati Vita Sarasi Lailan Tawila Berampu 《Geography and Sustainability》 CSCD 2024年第4期577-587,共11页
This study aims to develop a system dynamic(SD)forecasting model based on the STIRPAT model to forecast the effect of an IDR 30 per kg CO_(2)e carbon tax on carbon emissions,estimate future carbon emissions under ten ... This study aims to develop a system dynamic(SD)forecasting model based on the STIRPAT model to forecast the effect of an IDR 30 per kg CO_(2)e carbon tax on carbon emissions,estimate future carbon emissions under ten scenarios,without and with the carbon tax,and estimate the environmental Kuznets curve(EKC)to predict Indonesia’s carbon emission peak.Carbon emission drivers in this study are decomposed into several factors,namely energy structure,energy intensity,industrial structure,GDP per capita,population,and fixed-asset investment.This study included nuclear power utilization starting in 2038.The research gaps addressed by this study compared to previous research are(1)use of the ex-ante approach,(2)inclusion of nuclear power plants,(3)testing the EKC hypothesis,and(4)contribution to government policy.The simulation results show that under the carbon tax,carbon emissions can be reduced by improving renewable energy structures,adjusting industrial structures to green businesses,and emphasizing fixed asset investment more environmentally friendly.Moreover,the result approved the EKC hypothesis.It shows an inverse U-shaped curve between GDP per capita and CO_(2)emissions in Indonesia.Indonesia’s fastest carbon emission peak is under scenario seven and is expected in 2040.Although an IDR 30 per kg CO_(2)e carbon tax and nuclear power will take decades to reduce carbon emissions,the carbon tax can still be a reference and has advantages to implement.This result can be a good beginning step for Indonesia,which has yet to gain experience with a carbon tax that can be implemented immediately and is helpful to decision-makers in putting into practice sensible measures to attain Indonesia’s carbon emission peaking.This research provides actionable insights internationally on carbon tax policies,nuclear energy adoption,EKC dynamics,global policy implications,and fostering international cooperation for carbon emission reductions. 展开更多
关键词 Carbon emissions Carbon tax System dynamics Environmental Kuznets curve STIRPAT model
在线阅读 下载PDF
Dynamic Modeling and Experimental Verification of an RPR Type Compliant Paralle Mechanism with Low Orders
10
作者 Shuang Zhang Jingfang Liu +1 位作者 Huafeng Ding Yanbin Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期83-94,共12页
Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The ... Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The mechanism with two out-of-plane rotational and one lifting degrees of freedom(DoFs)plays an important role in posture adjustment.Based on elastic beam theory,the stiffness matrix and mass matrix of the beam element are established where the moment of inertia is considered.To improve solving efficiency,a dynamic model with low orders of the mechanism is established based on a modified modal synthesis method.Firstly,each branch of the RPR type mechanism is divided into a substructure.Subsequently,a set of hypothetical modes of each substructure is obtained based on the C-B method.Finally,dynamic equation of the whole mechanism is established by the substructure assembly.A dynamic experiment is conducted to verify the dynamic characteristics of the compliant mechanism. 展开更多
关键词 Compliant parallel mechanism dynamic model Modal synthesis method dynamic experiment
在线阅读 下载PDF
Dynamics Modeling and Parameter Identification for a Coupled-Drive Dual-Arm Nursing Robot
11
作者 Hao Lu Zhiqiang Yang +2 位作者 Deliang Zhu Fei Deng Shijie Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期243-257,共15页
A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well... A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots. 展开更多
关键词 Nursing-care robot Coupled-drive joint dynamic modeling Parameter identification
在线阅读 下载PDF
Stability and accuracy of central difference method for real-time dynamic substructure testing considering mass participation coefficient
12
作者 Zheng Lichang Xu Guoshan +3 位作者 Yang Ge Wang Zhen Yang Kaibo Zheng Zhenyun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期625-636,共12页
For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study prop... For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper. 展开更多
关键词 real-time dynamic substructure testing central difference method STABILITY mass participation coefficient tuned liquid damper
在线阅读 下载PDF
Characterization and identification towards dynamic-based electrical modeling of lithium-ion batteries
13
作者 Chuanxin Fan Kailong Liu +1 位作者 Yaxing Ren Qiao Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期738-758,共21页
Lithium-ion batteries are widely recognized as a crucial enabling technology for the advancement of electric vehicles and energy storage systems in the grid.The design of battery state estimation and control algorithm... Lithium-ion batteries are widely recognized as a crucial enabling technology for the advancement of electric vehicles and energy storage systems in the grid.The design of battery state estimation and control algorithms in battery management systems is usually based on battery models,which interpret crucial battery dynamics through the utilization of mathematical functions.Therefore,the investigation of battery dynamics with the purpose of battery system identification has garnered considerable attention in the realm of battery research.Characterization methods in terms of linear and nonlinear response of lithium-ion batteries have emerged as a prominent area of study in this field.This review has undertaken an analysis and discussion of characterization methods,with a particular focus on the motivation of battery system identification.Specifically,this work encompasses the incorporation of frequency domain nonlinear characterization methods and dynamics-based battery electrical models.The aim of this study is to establish a connection between the characterization and identification of battery systems for researchers and engineers specialized in the field of batteries,with the intention of promoting the advancement of efficient battery technology for real-world applications. 展开更多
关键词 Lithium-ion battery Battery dynamics Nonlinear characterization Nonlinear battery model
在线阅读 下载PDF
Dynamics modeling and optimal control for multi-information diffusion in Social Internet of Things
14
作者 Yaguang Lin Xiaoming Wang +1 位作者 Liang Wang Pengfei Wan 《Digital Communications and Networks》 SCIE CSCD 2024年第3期655-665,共11页
As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for... As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method. 展开更多
关键词 Social Internet of Things Information diffusion dynamics modeling Trend prediction Optimal control
在线阅读 下载PDF
Influence of Various Earth-Retaining Walls on the Dynamic Response Comparison Based on 3D Modeling
15
作者 Muhammad Akbar Huali Pan +2 位作者 Jiangcheng Huang Bilal Ahmed Guoqiang Ou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2835-2863,共29页
The present work aims to assess earthquake-induced earth-retaining(ER)wall displacement.This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels,reinforcement co... The present work aims to assess earthquake-induced earth-retaining(ER)wall displacement.This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels,reinforcement concrete facing panels,and gravity-type earth-retaining walls.The finite element(FE)simulations utilized a 3D plane strain condition to model full-scale ER walls and numerous nonlinear dynamics analyses.The seismic performance of differentmodels,which includes reinforcement concrete panels and gravity-type and hollowprecast concrete ER walls,was simulated and examined using the FE approach.It also displays comparative studies such as stress distribution,deflection of the wall,acceleration across the wall height,lateral wall displacement,lateral wall pressure,and backfill plastic strain.Three components of the created ER walls were found throughout this research procedure.One is a granular reinforcement backfill,while the other is a wall-facing panel and base foundation.The dynamic response effects of varied earth-retaining walls have also been studied.It was discovered that the facing panel of the model significantly impacts the earthquake-induced displacement of ER walls.The proposed analytical model’s validity has been evaluated and compared with the reinforcement concrete facing panels,gravity-type ER wall,scientifically available data,and American Association of State Highway and Transportation Officials(AASHTO)guidelines results based on FE simulation.The results of the observations indicate that the hollow prefabricated concrete ER wall is the most feasible option due to its lower displacement and high-stress distribution compared to the two types.The methodology and results of this study establish standards for future analogous investigations and professionals,particularly in light of the increasing computational capabilities of desktop computers. 展开更多
关键词 Seismic analysis finite element modeling earth-retaining ER walls dynamic response structural resilience
在线阅读 下载PDF
Computational Fluid Dynamics Approach for Predicting Pipeline Response to Various Blast Scenarios: A Numerical Modeling Study
16
作者 Farman Saifi Mohd Javaid +1 位作者 Abid Haleem S.M.Anas 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2747-2777,共31页
Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile fac... Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events. 展开更多
关键词 Blast loading computational fluid dynamics computer modeling pipe networks response prediction structural safety
在线阅读 下载PDF
Pose prediction based on dynamic modeling and virtual prototype simulation of shield tunnelling machine
17
作者 JIN Da-long WANG Xu-yang +2 位作者 YUAN Da-jun LI Xiu-dong DU Chang-yan 《Journal of Central South University》 CSCD 2024年第11期3854-3867,共14页
Compared with traditional feedback control,predictive control can eliminate the lag of pose control and avoid the snakelike motion of shield machines.Therefore,a shield pose prediction model was proposed based on dyna... Compared with traditional feedback control,predictive control can eliminate the lag of pose control and avoid the snakelike motion of shield machines.Therefore,a shield pose prediction model was proposed based on dynamic modeling.Firstly,the dynamic equations of shield thrust system were established to clarify the relationship between force and movement of shield machine.Secondly,an analytical model was proposed to predict future multistep pose of the shield machine.Finally,a virtual prototype model was developed to simulate the dynamic behavior of the shield machine and validate the accuracy of the proposed pose prediction method.Results reveal that the model proposed can predict the shield pose with high accuracy,which can provide a decision basis whether for manual or automatic control of shield pose. 展开更多
关键词 shield machine motion trajectory dynamic modeling virtual prototype pose prediction
在线阅读 下载PDF
Multi-Body Dynamics Modeling of Heavy Goods Vehicle-Rail Interaction
18
作者 Lili Liu Jianhua Liu Jihong Zuo 《Open Journal of Applied Sciences》 2024年第7期1715-1722,共8页
Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonablenes... Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling. 展开更多
关键词 Vehicle-Rail Coupling dynamic modeling Wheel-Rail Interaction Forces
在线阅读 下载PDF
Dynamical Modeling and Dynamic Characteristics Analysisof a Coaxial Dual-Rotor System
19
作者 Yubin Yue Hongjun Wang Shenglun Zhang 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第2期99-111,共13页
The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial fo... The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial for rotor system dynamics. Previous work introduced a coaxial dual-rotor-support scheme for aeroengines,and a physical model featuring a high-speed flexible inner rotor with a substantial length-to-diameter ratiowas designed. Then a finite element (FE) dynamic model based on the Timoshenko beam elements and rigid bodykinematics of the dual-rotor system is modeled, with the Newmark method and Newton–Raphson method used forthe numerical calculation to study the dynamic characteristics of the system. Three different simulation models,including beam-based FE (1D) model, solid-based FE (3D) model, and transfer matrix model, were designed tostudy the characteristics of mode and the critical speed characteristic of the dual-rotor system. The unbalancedresponse of the dual-rotor system was analyzed to study the influence of mass unbalance on the rotor system. Theeffect of different disk unbalance phases and different speed ratios on the dynamic characteristics of the dual-rotorsystem was investigated in detail. The experimental result shows that the beam-based FE model is effective andsuitable for studying the dual-rotor system. 展开更多
关键词 coaxial dual-rotor system dynamical modeling dynamic characteristics analysis rotor dynamics
在线阅读 下载PDF
Angiography-Based Computational Modeling for In Vivo Assessment of Endothelial Dynamic Strain in Coronary Arteries with De Novo Lesions:Comparison of Treatment Effects of Drug-Coated Balloons Between Small and Large Arteries
20
作者 Lei Xu Zhouhao Tang +7 位作者 He Zou Yiqiu Jiang Youxian Shen Xinmin Zhang Ahmed Elkoumy Xueqiang Guan Lianpin Wu Xinlei Wu 《Cardiovascular Innovations and Applications》 2024年第1期616-627,共12页
Acute morphological changes in de novo coronary lesions after drug-coated balloon(DCB)angioplasty can affect endothelial mechanics and consequently clinical outcomes.Angiography-based computational modeling has been v... Acute morphological changes in de novo coronary lesions after drug-coated balloon(DCB)angioplasty can affect endothelial mechanics and consequently clinical outcomes.Angiography-based computational modeling has been validated to assess endothelial dynamic strain(EDS)in coronary arteries in vivo.The EDS was calculated on the basis of pre-and post-DCB angiography.Parameters of quantitative coronary angiography and EDS were quantified at cross-sections in the treated segments.A total of 336 and 348 lesion cross-sections were included in the small/large vessel groups,respectively.The acute lumen gain after DCB was significantly higher in large than small vessels(relative changes:21.3%[17.4%,25.1%]vs.7.4%[4.8%,10.1%],P<0.001).Before treatment,three indices of EDS were significantly higher in small than large vessels(for ED-EDS:29.2%[19.8%,44.8%]vs.20.4%[14.3%,30.2%];for ES-EDS:26.8%[18.9%,37.7%]vs.18.3%[13.9%,25.4%];for TA-EDS:19.1%[13.9%,27.8%]vs.14.3%[10.5%,20.1%],P<0.001).After treatment,the EDS in small vessels significantly decreased(P<0.001).ED-EDS showed the highest correlation with pre-DCB DSP(r=0.43,P<0.001)and post-DCB MLD(r=0.35,P<0.001).The levels of EDS parameters for small or large vessel lesions significantly differed.Further study is required to examine the clinical value of EDS in predicting cardiac events after DCB treatment. 展开更多
关键词 computational modeling coronary angiography endothelial dynamic strain drug-coated balloon de novo lesion
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部