期刊文献+
共找到414篇文章
< 1 2 21 >
每页显示 20 50 100
Analysis of gender's role on voluntary tendency of potential/active volunteers via logistic regression modeling: The case of Canakkale Onsekiz Mart University
1
作者 Ayten Akatay 《Chinese Business Review》 2010年第8期55-63,共9页
From economy to political administrations, education to health, environment to human rights, many problems we met have gained a global importance in recent days. Existing state systems, political parties and nation st... From economy to political administrations, education to health, environment to human rights, many problems we met have gained a global importance in recent days. Existing state systems, political parties and nation states are not adequate for solving these problems in question effectively on their own. Not only governments and local authorities but also voluntary organizations based on completely voluntary activities have significant roles in solving these problems. Effective performance of voluntary organizations depends on increasing volunteer population. Individuals' attitudes or their perception of understanding volunteerism play an important role in their contributions to voluntary organizations. The aim of this study is to determine individuals' ways of perceiving volunteerism concept and their tendency towards it. Furthermore, differences between men and women's perception and attitudes towards volunteerism concept have been examined. For this purpose, a survey has been conducted over university students of bachelor's degree. Tendencies and attitudes towards volunteerism compared to gender differences have been tested via logistic regression method. Research results reveal that women take part in voluntary activities more than men and women perceive volunteerism as "a political position" while men perceive volunteerism as "a learning atmosphere and learning process". 展开更多
关键词 VOLUNTEERISM volunteerism tendency volunteerism perception potential/active volunteers logistic regression modeling
在线阅读 下载PDF
Landslide-Dammed Mapping and Logistic Regression Modeling Using GIS and R Statistical Software in the Northeast Afghanistan
2
作者 Mohammad Kazem Naseri Dongshik Kang 《Journal of Electrical Engineering》 2016年第4期165-172,共8页
A complex terrain and topography resulted in an enormous landslide-dammed area northeast of Afghanistan. Moreover, debris, rock avalanches, and landslides occurrences are the primary source of lakes created within the... A complex terrain and topography resulted in an enormous landslide-dammed area northeast of Afghanistan. Moreover, debris, rock avalanches, and landslides occurrences are the primary source of lakes created within the area. Recently, instances have increased because of the high displacement and mass movement by glacial and seismic activities. In this study, using GIS and R statistical software, we performed a logistic regression modeling in order to map and predict the probability of landslides-dammed occurrences. Totally, 361 lakes were mapped using Google Earth historical imagery. This total was divided into 253 (70%) lakes for modeling and 801 (30%) lakes for the model validation. They were randomly selected by creating a fishnet for the study area using Arc toolbox in GIS. Four independent variables that are mostly contributed to landslide-dammed occurrences consisting of slope angles, relief classes, distances to major water sources and earthquake epicenters, were extracted from DEM (digital elevation model) data using 85-meter resolution. The result is a grid map that classified the area into Low (16,834.98 km2), Medium (2,217.302 kin:) and High (2,013.55 km2) vulnerability to landslide-dammed occurrences. Overall, the model result has been validated by using a ROC (receiver operator characteristic) curve available in SPSS software. The model validation showed a 95.1 percent prediction accuracy that is considered satisfactory. 展开更多
关键词 Landslide-dammed area mapping Northeast Afghanistan logistic regression modeling GIS and R.
在线阅读 下载PDF
Modeling of Spatial Distributions of Farmland Density and Its Temporal Change Using Geographically Weighted Regression Model 被引量:2
3
作者 ZHANG Haitao GUO Long +3 位作者 CHEN Jiaying FU Peihong GU Jianli LIAO Guangyu 《Chinese Geographical Science》 SCIE CSCD 2014年第2期191-204,共14页
This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 199... This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 1999 and 2009,and discussed the difference between global and local spatial autocorrelations in terms of spatial heterogeneity and non-stationarity.Results showed that strong spatial positive correlations existed in the spatial distributions of farmland density,its temporal change and the driving factors,and the coefficients of spatial autocorrelations decreased as the spatial lag distance increased.SAR models revealed the global spatial relations between dependent and independent variables,while the GWR model showed the spatially varying fitting degree and local weighting coefficients of driving factors and farmland indices(i.e.,farmland density and temporal change).The GWR model has smooth process when constructing the farmland spatial model.The coefficients of GWR model can show the accurate influence degrees of different driving factors on the farmland at different geographical locations.The performance indices of GWR model showed that GWR model produced more accurate simulation results than other models at different times,and the improvement precision of GWR model was obvious.The global and local farmland models used in this study showed different characteristics in the spatial distributions of farmland indices at different scales,which may provide the theoretical basis for farmland protection from the influence of different driving factors. 展开更多
关键词 spatial lag model spatial error model geographically weighted regression model global spatial autocorrelation local spatial aurocorrelation
在线阅读 下载PDF
Field study and regression modeling on soil water distribution with mulching and surface or subsurface drip irrigation systems 被引量:2
4
作者 Mohamed A.Mattar Ahmed A.Al-Othman +2 位作者 Hosam O.Elansary Ahmed M.Elfeky Akram K.Alshami 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第2期142-150,共9页
The soil water status was investigated under soil surface mulching techniques and two drip line depths from the soil surface(DL).These techniques were black plastic film(BPF),palm tree waste(PTW),and no mulching(NM)as... The soil water status was investigated under soil surface mulching techniques and two drip line depths from the soil surface(DL).These techniques were black plastic film(BPF),palm tree waste(PTW),and no mulching(NM)as the control treatment.The DL were 15 cm and 25 cm,with surface drip irrigation used as the control.The results indicated that both the BPF and PTW mulching enhanced the soil water retention capacity and there was about 6%water saving in subsurface drip irrigation,compared with NM.Furthermore,the water savings at a DL of 25 cm were lower(15-20 mm)than those at a DL of 15 cm(19-24 mm),whereas surface drip irrigation consumed more water.The distribution of soil water content(θv)for BPF and PTW were more useful than for NM.Hence,mulching the soil with PTW is recommended due to the lower costs and using a DL of 15 cm.Theθv values were derived using multiple linear regression(MLR)and multiple nonlinear regression(MNLR)models.Multiple regression analysis revealed the superiority of the MLR over the MNLR model,which in the training and testing processes had coefficients of correlation of 0.86 and 0.88,root mean square errors of 0.37 and 0.35,and indices of agreement of 0.99 and 0.93,respectively,over the MNLR model.Moreover,DL and spacing from the drip line had a significant effect on the estimation of θv. 展开更多
关键词 palm tree waste mulching plastic film mulching soil water distribution regression models
原文传递
Modeling Cyber Loss Severity Using a Spliced Regression Distribution with Mixture Components
5
作者 Meng Sun 《Open Journal of Statistics》 2023年第4期425-452,共28页
Cyber losses in terms of number of records breached under cyber incidents commonly feature a significant portion of zeros, specific characteristics of mid-range losses and large losses, which make it hard to model the... Cyber losses in terms of number of records breached under cyber incidents commonly feature a significant portion of zeros, specific characteristics of mid-range losses and large losses, which make it hard to model the whole range of the losses using a standard loss distribution. We tackle this modeling problem by proposing a three-component spliced regression model that can simultaneously model zeros, moderate and large losses and consider heterogeneous effects in mixture components. To apply our proposed model to Privacy Right Clearinghouse (PRC) data breach chronology, we segment geographical groups using unsupervised cluster analysis, and utilize a covariate-dependent probability to model zero losses, finite mixture distributions for moderate body and an extreme value distribution for large losses capturing the heavy-tailed nature of the loss data. Parameters and coefficients are estimated using the Expectation-Maximization (EM) algorithm. Combining with our frequency model (generalized linear mixed model) for data breaches, aggregate loss distributions are investigated and applications on cyber insurance pricing and risk management are discussed. 展开更多
关键词 Cyber Risk Data Breach Spliced regression Model Finite Mixture Distribu-tion Cluster Analysis Expectation-Maximization Algorithm Extreme Value Theory
在线阅读 下载PDF
Regression analysis and its application to oil and gas exploration:A case study of hydrocarbon loss recovery and porosity prediction,China
6
作者 Yang Li Xiaoguang Li +3 位作者 Mingyu Guo Chang Chen Pengbo Ni Zijian Huang 《Energy Geoscience》 EI 2024年第4期240-252,共13页
In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not... In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery. 展开更多
关键词 regression analysis Oil and gas exploration Multiple linear regression model Nonlinear regression model Hydrocarbon loss recovery Porosity prediction
在线阅读 下载PDF
Optimization of Artificial Viscosity in Production Codes Based on Gaussian Regression Surrogate Models
7
作者 Vitaliy Gyrya Evan Lieberman +1 位作者 Mark Kenamond Mikhail Shashkov 《Communications on Applied Mathematics and Computation》 EI 2024年第3期1521-1550,共30页
To accurately model flows with shock waves using staggered-grid Lagrangian hydrodynamics, the artificial viscosity has to be introduced to convert kinetic energy into internal energy, thereby increasing the entropy ac... To accurately model flows with shock waves using staggered-grid Lagrangian hydrodynamics, the artificial viscosity has to be introduced to convert kinetic energy into internal energy, thereby increasing the entropy across shocks. Determining the appropriate strength of the artificial viscosity is an art and strongly depends on the particular problem and experience of the researcher. The objective of this study is to pose the problem of finding the appropriate strength of the artificial viscosity as an optimization problem and solve this problem using machine learning (ML) tools, specifically using surrogate models based on Gaussian Process regression (GPR) and Bayesian analysis. We describe the optimization method and discuss various practical details of its implementation. The shock-containing problems for which we apply this method all have been implemented in the LANL code FLAG (Burton in Connectivity structures and differencing techniques for staggered-grid free-Lagrange hydrodynamics, Tech. Rep. UCRL-JC-110555, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1992, in Consistent finite-volume discretization of hydrodynamic conservation laws for unstructured grids, Tech. Rep. CRL-JC-118788, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, Multidimensional discretization of conservation laws for unstructured polyhedral grids, Tech. Rep. UCRL-JC-118306, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, in FLAG, a multi-dimensional, multiple mesh, adaptive free-Lagrange, hydrodynamics code. In: NECDC, 1992). First, we apply ML to find optimal values to isolated shock problems of different strengths. Second, we apply ML to optimize the viscosity for a one-dimensional (1D) propagating detonation problem based on Zel’dovich-von Neumann-Doring (ZND) (Fickett and Davis in Detonation: theory and experiment. Dover books on physics. Dover Publications, Mineola, 2000) detonation theory using a reactive burn model. We compare results for default (currently used values in FLAG) and optimized values of the artificial viscosity for these problems demonstrating the potential for significant improvement in the accuracy of computations. 展开更多
关键词 OPTIMIZATION Artificial viscosity Gaussian regression surrigate model
在线阅读 下载PDF
Composition Analysis and Identification of Ancient Glass Products Based on L1 Regularization Logistic Regression
8
作者 Yuqiao Zhou Xinyang Xu Wenjing Ma 《Applied Mathematics》 2024年第1期51-64,共14页
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste... In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics. 展开更多
关键词 Glass Composition L1 Regularization Logistic regression Model K-Means Clustering Analysis Elbow Rule Parameter Verification
在线阅读 下载PDF
Driving factors of CO_(2)emissions in South American countries:An application of Seemingly Unrelated Regression model
9
作者 Gadir BAYRAMLI Turan KARIMLI 《Regional Sustainability》 2024年第4期120-132,共13页
Carbon emissions have become a critical concern in the global effort to combat climate change,with each country or region contributing differently based on its economic structures,energy sources,and industrial activit... Carbon emissions have become a critical concern in the global effort to combat climate change,with each country or region contributing differently based on its economic structures,energy sources,and industrial activities.The factors influencing carbon emissions vary across countries and sectors.This study examined the factors influencing CO_(2)emissions in the 7 South American countries including Argentina,Brazil,Chile,Colombia,Ecuador,Peru,and Venezuela.We used the Seemingly Unrelated Regression(SUR)model to analyse the relationship of CO_(2)emissions with gross domestic product(GDP),renewable energy use,urbanization,industrialization,international tourism,agricultural productivity,and forest area based on data from 2000 to 2022.According to the SUR model,we found that GDP and industrialization had a moderate positive effect on CO_(2)emissions,whereas renewable energy use had a moderate negative effect on CO_(2)emissions.International tourism generally had a positive impact on CO_(2)emissions,while forest area tended to decrease CO_(2)emissions.Different variables had different effects on CO_(2)emissions in the 7 South American countries.In Argentina and Venezuela,GDP,international tourism,and agricultural productivity significantly affected CO_(2)emissions.In Colombia,GDP and international tourism had a negative impact on CO_(2)emissions.In Brazil,CO_(2)emissions were primarily driven by GDP,while in Chile,Ecuador,and Peru,international tourism had a negative effect on CO_(2)emissions.Overall,this study highlights the importance of country-specific strategies for reducing CO_(2)emissions and emphasizes the varying roles of these driving factors in shaping environmental quality in the 7 South American countries. 展开更多
关键词 CO_(2)emissions Urbanization INDUSTRIALIZATION International tourism Agricultural productivity Seemingly Unrelated regression(SUR)model South American countries
在线阅读 下载PDF
Research on the Relationship Between Average Cigarette Price per Box and Government Procurement in City A Based on a Regression Model
10
作者 Yao Nie Hongbo Wan Mingming Mao 《Proceedings of Business and Economic Studies》 2024年第5期68-72,共5页
This study aims to analyze and predict the relationship between the average price per box in the cigarette market of City A and government procurement,providing a scientific basis and support for decision-making.By re... This study aims to analyze and predict the relationship between the average price per box in the cigarette market of City A and government procurement,providing a scientific basis and support for decision-making.By reviewing relevant theories and literature,qualitative prediction methods,regression prediction models,and other related theories were explored.Through the analysis of annual cigarette sales data and government procurement data in City A,a comprehensive understanding of the development of the tobacco industry and the economic trends of tobacco companies in the county was obtained.By predicting and analyzing the average price per box of cigarette sales across different years,corresponding prediction results were derived and compared with actual sales data.The prediction results indicate that the correlation coefficient between the average price per box of cigarette sales and government procurement is 0.982,implying that government procurement accounts for 96.4%of the changes in the average price per box of cigarettes.These findings offer an in-depth exploration of the relationship between the average price per box of cigarettes in City A and government procurement,providing a scientific foundation for corporate decision-making and market operations. 展开更多
关键词 Cigarette marketing regression model Predictive model Government purchasing
在线阅读 下载PDF
Modeling Solid Waste Minimization Performance at Source in Dar es Salaam City, Tanzania
11
作者 Abdon Salim Mapunda Richard Joseph Kimwaga Shaaban Ally Kassuwi 《Journal of Geoscience and Environment Protection》 2024年第9期17-32,共16页
Municipal solid waste generation is strongly linked to rising human population and expanding urban areas, with significant implications on urban metabolism as well as space and place values redefinition. Effective man... Municipal solid waste generation is strongly linked to rising human population and expanding urban areas, with significant implications on urban metabolism as well as space and place values redefinition. Effective management performance of municipal solid waste management underscores the interdisciplinarity strategies. Such knowledge and skills are paramount to uncover the sources of waste generation as well as means of waste storage, collection, recycling, transportation, handling/treatment, disposal, and monitoring. This study was conducted in Dar es Salaam city. Driven by the curiosity model of the solid waste minimization performance at source, study data was collected using focus group discussion techniques to ward-level local government officers, which was triangulated with literature and documentary review. The main themes of the FGD were situational factors (SFA) and local government by-laws (LGBY). In the FGD session, sub-themes of SFA tricked to understand how MSW minimization is related to the presence and effect of services such as land use planning, availability of landfills, solid waste transfer stations, material recovery facilities, incinerators, solid waste collection bins, solid waste trucks, solid waste management budget and solid waste collection agents. Similarly, FGD on LGBY was extended by sub-themes such as contents of the by-law, community awareness of the by-law, and by-law enforcement mechanisms. While data preparation applied an analytical hierarchy process, data analysis applied an ordinary least square (OLS) regression model for sub-criteria that explain SFA and LGBY;and OLS standard residues as variables into geographically weighted regression with a resolution of 241 × 241 meter in ArcMap v10.5. Results showed that situational factors and local government by-laws have a strong relationship with the rate of minimizing solid waste dumping in water bodies (local R square = 0.94). 展开更多
关键词 modeling Solid Waste Minimization Dar es Salaam City Ordinary Least Square (OLS) regression Model Situation Factors Local Government by Laws
在线阅读 下载PDF
Influencing Factors of Museum Self-Improvement in China: A Multiple Linear Regression Analysis
12
作者 Zhenjing Gu Da Meng +1 位作者 Hui Yang Xiaofei Liu 《Proceedings of Business and Economic Studies》 2024年第6期238-250,共13页
The purpose of this research is to explore the factors influencing the self-improvement process of museums in China and to conduct empirical analyses based on multiple linear regression models.As core institutions for... The purpose of this research is to explore the factors influencing the self-improvement process of museums in China and to conduct empirical analyses based on multiple linear regression models.As core institutions for inheriting and displaying cultural heritage and enhancing public cultural literacy,museums’self-improvement is of great significance in promoting cultural development,optimizing the supply of public cultural services,and enhancing social influence.This paper constructs a multiple linear regression model for the influencing factors of museum self-improvement by integrating several key variables,including emerging cultural and museum business(EF),institutional reform(SR),research and innovation level(RIL),management level(ML),and the museum cultural and creative industry(MCCI).The study employs scientific methods such as literature review,data collection,and data analysis to thoroughly explore the internal logic of museum operations and development.Through multiple linear regression analyses,it quantifies the specific influence and relative importance of each factor on the level of museum self-improvement.The results indicate that the management level(ML)is the dominant factor among the variables studied,exerting the most significant influence on museum self-improvement.Based on these empirical findings,this paper provides an in-depth analysis of the specific factors affecting museum self-improvement in China,offering solid theoretical support and practical guidance for the sustainable development of museums. 展开更多
关键词 Museum self-improvement Influencing factors Multiple linear regression model
在线阅读 下载PDF
Genetic Regression Model for Dam Safety Monitoring 被引量:2
13
作者 马震岳 陈维江 董毓新 《Transactions of Tianjin University》 EI CAS 2002年第3期196-199,共4页
Under-fitting problems usually occur in regression models for dam safety monitoring.To overcome the local convergence of the regression, a genetic algorithm (GA) was proposed using a real parameter coding, a ranking s... Under-fitting problems usually occur in regression models for dam safety monitoring.To overcome the local convergence of the regression, a genetic algorithm (GA) was proposed using a real parameter coding, a ranking selection operator, an arithmetical crossover operator and a uniform mutation operator, and calculated the least-square error of the observed and computed values as its fitness function. The elitist strategy was used to improve the speed of the convergence. After that, the modified genetic algorithm was applied to reassess the coefficients of the regression model and a genetic regression model was set up. As an example, a slotted gravity dam in the Northeast of China was introduced. The computational results show that the genetic regression model can solve the under-fitting problems perfectly. 展开更多
关键词 dam safety monitoring under-fitting genetic regression model
在线阅读 下载PDF
RBF neural network regression model based on fuzzy observations 被引量:1
14
作者 朱红霞 沈炯 苏志刚 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期400-406,共7页
A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership fu... A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership functions. In the FORBFNN model, the weight coefficients of nodes in the hidden layer are identified by using the fuzzy expectation-maximization ( EM ) algorithm, whereas the optimal number of these nodes as well as the centers and widths of radial basis functions are automatically constructed by using a data-driven method. Namely, the method starts with an initial node, and then a new node is added in a hidden layer according to some rules. This procedure is not terminated until the model meets the preset requirements. The method considers both the accuracy and complexity of the model. Numerical simulation results show that the modeling method is effective, and the established model has high prediction accuracy. 展开更多
关键词 radial basis function neural network (RBFNN) fuzzy membership function imprecise observation regression model
在线阅读 下载PDF
Analysis and application of partial least square regression in arc welding process 被引量:3
15
作者 杨海澜 蔡艳 +1 位作者 包晔峰 周昀 《Journal of Central South University of Technology》 EI 2005年第4期453-458,共6页
Because of the relativity among the parameters, partial least square regression(PLSR)was applied to build the model and get the regression equation. The improved algorithm simplified the calculating process greatly be... Because of the relativity among the parameters, partial least square regression(PLSR)was applied to build the model and get the regression equation. The improved algorithm simplified the calculating process greatly because of the reduction of calculation. The orthogonal design was adopted in this experiment. Every sample had strong representation, which could reduce the experimental time and obtain the overall test data. Combined with the formation problem of gas metal arc weld with big current, the auxiliary analysis technique of PLSR was discussed and the regression equation of form factors (i.e. surface width, weld penetration and weld reinforcement) to process parameters(i.e. wire feed rate, wire extension, welding speed, gas flow, welding voltage and welding current)was given. The correlativity structure among variables was analyzed and there was certain correlation between independent variables matrix X and dependent variables matrix Y. The regression analysis shows that the welding speed mainly influences the weld formation while the variation of gas flow in certain range has little influence on formation of weld. The fitting plot of regression accuracy is given. The fitting quality of regression equation is basically satisfactory. 展开更多
关键词 PLSR regression modeling formation of weld
在线阅读 下载PDF
Modeling the Effects of Tool Shoulder and Probe Profile Geometries on Friction Stirred Aluminum Welds Using Response Surface Methodology 被引量:2
16
作者 H. K. Mohanty M. M. Mahapatra +2 位作者 P. Kumar P. Biswas N. R. Mandal 《Journal of Marine Science and Application》 2012年第4期493-503,共11页
The present paper discusses the modeling of tool geometry effects on the friction stir aluminum welds using response surface methodology. The friction stir welding tools were designed with different shoulder and tool ... The present paper discusses the modeling of tool geometry effects on the friction stir aluminum welds using response surface methodology. The friction stir welding tools were designed with different shoulder and tool probe geometries based on a design matrix. The matrix for the tool designing was made for three types of tools, based on three types of probes, with three levels each for defining the shoulder surface type and probe profile geometries. Then, the effects of tool shoulder and probe geometries on friction stirred aluminum welds were experimentally investigated with respect to weld strength, weld cross section area, grain size of weld and grain size of thermo-mechanically affected zone. These effects were modeled using multiple and response surface regression analysis. The response surface regression modeling were found to be appropriate for defining the friction stir weldment characteristics. 展开更多
关键词 friction stir welding (FSW) tool geometries mechanical properties microstructures response surface regression modeling
在线阅读 下载PDF
DISCREPANCIES IN THE REGRESSION MODELLING OF RECRYSTALLIZATION RATE AS USING THE DATA FROM PHYSICAL SIMULATION TESTS 被引量:1
17
作者 L.P.Karjalainen M.C.Somani S.F.Medina 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第3期221-228,共8页
The analysis of numerous experimental equations published in the literature reveals awide scatter in the predictions for the static recrystallization kinetics of steels. Thepowers of the deformation variables, strain ... The analysis of numerous experimental equations published in the literature reveals awide scatter in the predictions for the static recrystallization kinetics of steels. Thepowers of the deformation variables, strain and strain rate, similarly as the powerof the grain size vary in these equations. These differences are highlighted and thetypical values are compared between torsion and compression tests. Potential errorsin physical simulation testing are discussed. 展开更多
关键词 physical simulation static recrystallization regression modeling hot working STEEL
在线阅读 下载PDF
The burden of upper motor neuron involvement is correlated with the bilateral limb involvement interval in patients with amyotrophic lateral sclerosis:a retrospective observational study
18
作者 Jieying Wu Shan Ye +2 位作者 Xiangyi Liu Yingsheng Xu Dongsheng Fan 《Neural Regeneration Research》 SCIE CAS 2025年第5期1505-1512,共8页
Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons.Early bilateral limb involvement significantly affects patients'daily lives ... Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons.Early bilateral limb involvement significantly affects patients'daily lives and may lead them to be confined to bed.However,the effect of upper and lower motor neuron impairment and other risk factors on bilateral limb involvement is unclear.To address this issue,we retrospectively collected data from 586 amyotrophic lateral sclerosis patients with limb onset diagnosed at Peking University Third Hospital between January 2020 and May 2022.A univariate analysis revealed no significant differences in the time intervals of spread in different directions between individuals with upper motor neuron-dominant amyotrophic lateral sclerosis and those with classic amyotrophic lateral sclerosis.We used causal directed acyclic graphs for risk factor determination and Cox proportional hazards models to investigate the association between the duration of bilateral limb involvement and clinical baseline characteristics in amyotrophic lateral sclerosis patients.Multiple factor analyses revealed that higher upper motor neuron scores(hazard ratio[HR]=1.05,95%confidence interval[CI]=1.01–1.09,P=0.018),onset in the left limb(HR=0.72,95%CI=0.58–0.89,P=0.002),and a horizontal pattern of progression(HR=0.46,95%CI=0.37–0.58,P<0.001)were risk factors for a shorter interval until bilateral limb involvement.The results demonstrated that a greater degree of upper motor neuron involvement might cause contralateral limb involvement to progress more quickly in limb-onset amyotrophic lateral sclerosis patients.These findings may improve the management of amyotrophic lateral sclerosis patients with limb onset and the prediction of patient prognosis. 展开更多
关键词 amyotrophic lateral sclerosis bilateral limb involvement Cox proportional hazards regression model horizontal spread restricted cubic spline analysis time interval upper motor neuron vertical spread
在线阅读 下载PDF
A Novel Self-Supervised Learning Network for Binocular Disparity Estimation
19
作者 Jiawei Tian Yu Zhou +5 位作者 Xiaobing Chen Salman A.AlQahtani Hongrong Chen Bo Yang Siyu Lu Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期209-229,共21页
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st... Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments. 展开更多
关键词 Parallax estimation parallax regression model self-supervised learning Pseudo-Siamese neural network pyramid dilated convolution binocular disparity estimation
在线阅读 下载PDF
PIAFGNN:Property Inference Attacks against Federated Graph Neural Networks
20
作者 Jiewen Liu Bing Chen +2 位作者 Baolu Xue Mengya Guo Yuntao Xu 《Computers, Materials & Continua》 2025年第2期1857-1877,共21页
Federated Graph Neural Networks (FedGNNs) have achieved significant success in representation learning for graph data, enabling collaborative training among multiple parties without sharing their raw graph data and so... Federated Graph Neural Networks (FedGNNs) have achieved significant success in representation learning for graph data, enabling collaborative training among multiple parties without sharing their raw graph data and solving the data isolation problem faced by centralized GNNs in data-sensitive scenarios. Despite the plethora of prior work on inference attacks against centralized GNNs, the vulnerability of FedGNNs to inference attacks has not yet been widely explored. It is still unclear whether the privacy leakage risks of centralized GNNs will also be introduced in FedGNNs. To bridge this gap, we present PIAFGNN, the first property inference attack (PIA) against FedGNNs. Compared with prior works on centralized GNNs, in PIAFGNN, the attacker can only obtain the global embedding gradient distributed by the central server. The attacker converts the task of stealing the target user’s local embeddings into a regression problem, using a regression model to generate the target graph node embeddings. By training shadow models and property classifiers, the attacker can infer the basic property information within the target graph that is of interest. Experiments on three benchmark graph datasets demonstrate that PIAFGNN achieves attack accuracy of over 70% in most cases, even approaching the attack accuracy of inference attacks against centralized GNNs in some instances, which is much higher than the attack accuracy of the random guessing method. Furthermore, we observe that common defense mechanisms cannot mitigate our attack without affecting the model’s performance on mainly classification tasks. 展开更多
关键词 Federated graph neural networks GNNs privacy leakage regression model property inference attacks EMBEDDINGS
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部