期刊文献+
共找到228篇文章
< 1 2 12 >
每页显示 20 50 100
Composition Analysis and Identification of Ancient Glass Products Based on L1 Regularization Logistic Regression
1
作者 Yuqiao Zhou Xinyang Xu Wenjing Ma 《Applied Mathematics》 2024年第1期51-64,共14页
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste... In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics. 展开更多
关键词 Glass Composition L1 regularization Logistic regression Model K-Means Clustering Analysis Elbow Rule Parameter Verification
在线阅读 下载PDF
Characterizing and estimating rice brown spot disease severity using stepwise regression,principal component regression and partial least-square regression 被引量:13
2
作者 LIU Zhan-yu1, HUANG Jing-feng1, SHI Jing-jing1, TAO Rong-xiang2, ZHOU Wan3, ZHANG Li-li3 (1Institute of Agriculture Remote Sensing and Information System Application, Zhejiang University, Hangzhou 310029, China) (2Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China) (3Plant Inspection Station of Hangzhou City, Hangzhou 310020, China) 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2007年第10期738-744,共7页
Detecting plant health conditions plays a key role in farm pest management and crop protection. In this study, measurement of hyperspectral leaf reflectance in rice crop (Oryzasativa L.) was conducted on groups of hea... Detecting plant health conditions plays a key role in farm pest management and crop protection. In this study, measurement of hyperspectral leaf reflectance in rice crop (Oryzasativa L.) was conducted on groups of healthy and infected leaves by the fungus Bipolaris oryzae (Helminthosporium oryzae Breda. de Hann) through the wavelength range from 350 to 2 500 nm. The percentage of leaf surface lesions was estimated and defined as the disease severity. Statistical methods like multiple stepwise regression, principal component analysis and partial least-square regression were utilized to calculate and estimate the disease severity of rice brown spot at the leaf level. Our results revealed that multiple stepwise linear regressions could efficiently estimate disease severity with three wavebands in seven steps. The root mean square errors (RMSEs) for training (n=210) and testing (n=53) dataset were 6.5% and 5.8%, respectively. Principal component analysis showed that the first principal component could explain approximately 80% of the variance of the original hyperspectral reflectance. The regression model with the first two principal components predicted a disease severity with RMSEs of 16.3% and 13.9% for the training and testing dataset, respec-tively. Partial least-square regression with seven extracted factors could most effectively predict disease severity compared with other statistical methods with RMSEs of 4.1% and 2.0% for the training and testing dataset, respectively. Our research demon-strates that it is feasible to estimate the disease severity of rice brown spot using hyperspectral reflectance data at the leaf level. 展开更多
关键词 HYPERSPECTRAL reflectance Rice BROWN SPOT PARTIAL least-square (PLS) regression STEPWISE regression Principal component regression (PCR)
在线阅读 下载PDF
Regularized least-squares migration of simultaneous-source seismic data with adaptive singular spectrum analysis 被引量:12
3
作者 Chuang Li Jian-Ping Huang +1 位作者 Zhen-Chun Li Rong-Rong Wang 《Petroleum Science》 SCIE CAS CSCD 2017年第1期61-74,共14页
Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of... Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of adjacent sources. To overcome this problem, we propose the regularized least-squares reverse time migration method (RLSRTM) using the singular spectrum analysis technique that imposes sparseness constraints on the inverted model. Additionally, the difference spectrum theory of singular values is presented so that RLSRTM can be implemented adaptively to eliminate the migration artifacts. With numerical tests on a fiat layer model and a Marmousi model, we validate the superior imaging quality, efficiency and convergence of RLSRTM compared with LSRTM when dealing with simultaneoussource data, incomplete data and noisy data. 展开更多
关键词 least-squares migration Adaptive singularspectrum analysis regularization Blended data
在线阅读 下载PDF
Application of regularized logistic regression for movement-related potentials-based EEG classification
4
作者 胡晨晨 王海贤 《Journal of Southeast University(English Edition)》 EI CAS 2013年第1期38-42,共5页
In order to improve classification accuracy, the regularized logistic regression is used to classify single-trial electroencephalogram (EEG). A novel approach, named local sparse logistic regression (LSLR), is pro... In order to improve classification accuracy, the regularized logistic regression is used to classify single-trial electroencephalogram (EEG). A novel approach, named local sparse logistic regression (LSLR), is proposed. The LSLR integrates the locality preserving projection regularization term into the framework of sparse logistic regression. It tries to maintain the neighborhood information of original feature space, and, meanwhile, keeps sparsity. The bound optimization algorithm and component-wise update are used to compute the weight vector in the training data, thus overcoming the disadvantage of the Newton-Raphson method and iterative re-weighted least squares (IRLS). The classification accuracy of 80% is achieved using ten-fold cross-validation in the self-paced finger tapping data set. The results of LSLR are compared with SLR, showing the effectiveness of the proposed method. 展开更多
关键词 logistic regression locality preserving projection regularization ELECTROENCEPHALOGRAM
在线阅读 下载PDF
A partial least-squares regression approach to land use studies in the Suzhou-Wuxi-Changzhou region 被引量:1
5
作者 ZHANG Yang ZHOU Chenghu ZHANG Yongmin 《Journal of Geographical Sciences》 SCIE CSCD 2007年第2期234-244,共11页
In several LUCC studies, statistical methods are being used to analyze land use data. A problem using conventional statistical methods in land use analysis is that these methods assume the data to be statistically ind... In several LUCC studies, statistical methods are being used to analyze land use data. A problem using conventional statistical methods in land use analysis is that these methods assume the data to be statistically independent. But in fact, they have the tendency to be dependent, a phenomenon known as multicollinearity, especially in the cases of few observations. In this paper, a Partial Least-Squares (PLS) regression approach is developed to study relationships between land use and its influencing factors through a case study of the Suzhou-Wuxi-Changzhou region in China. Multicollinearity exists in the dataset and the number of variables is high compared to the number of observations. Four PLS factors are selected through a preliminary analysis. The correlation analyses between land use and influencing factors demonstrate the land use character of rural industrialization and urbanization in the Suzhou-Wuxi-Changzhou region, meanwhile illustrate that the first PLS factor has enough ability to best describe land use patterns quantitatively, and most of the statistical relations derived from it accord with the fact. By the decreasing capacity of the PLS factors, the reliability of model outcome decreases correspondingly. 展开更多
关键词 land use multivariate data analysis partial least-squares regression Suzhou-Wuxi-Changzhou region MULTICOLLINEARITY
在线阅读 下载PDF
Regularized quantile regression for SNP marker estimation of pig growth curves
6
作者 L.M.A.Barroso M.Nascimento +8 位作者 A.C.C.Nascimento1 F.F.Silva N.V.L.Serao C.D.Cruz M.D.V.Resende F.L.Silva C.F.Azevedo P.S.Lopes S.E.F.Guimaraes 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2017年第4期824-832,共9页
Background: Genomic growth curves are general y defined only in terms of population mean; an alternative approach that has not yet been exploited in genomic analyses of growth curves is the Quantile Regression(QR). Th... Background: Genomic growth curves are general y defined only in terms of population mean; an alternative approach that has not yet been exploited in genomic analyses of growth curves is the Quantile Regression(QR). This methodology allows for the estimation of marker effects at different levels of the variable of interest. We aimed to propose and evaluate a regularized quantile regression for SNP marker effect estimation of pig growth curves, as well as to identify the chromosome regions of the most relevant markers and to estimate the genetic individual weight trajectory over time(genomic growth curve) under different quantiles(levels).Results: The regularized quantile regression(RQR) enabled the discovery, at different levels of interest(quantiles), of the most relevant markers al owing for the identification of QTL regions. We found the same relevant markers simultaneously affecting different growth curve parameters(mature weight and maturity rate): two(ALGA0096701 and ALGA0029483)for RQR(0.2), one(ALGA0096701) for RQR(0.5), and one(ALGA0003761) for RQR(0.8). Three average genomic growth curves were obtained and the behavior was explained by the curve in quantile 0.2, which differed from the others.Conclusions: RQR allowed for the construction of genomic growth curves, which is the key to identifying and selecting the most desirable animals for breeding purposes. Furthermore, the proposed model enabled us to find, at different levels of interest(quantiles), the most relevant markers for each trait(growth curve parameter estimates) and their respective chromosomal positions(identification of new QTL regions for growth curves in pigs). These markers can be exploited under the context of marker assisted selection while aiming to change the shape of pig growth curves. 展开更多
关键词 GENOME association Growth CURVE PIG QTL regularized QUANTILE regression
在线阅读 下载PDF
Bayesian Regularized Quantile Regression Analysis Based on Asymmetric Laplace Distribution
7
作者 Qiaoqiao Tang Haomin Zhang Shifeng Gong 《Journal of Applied Mathematics and Physics》 2020年第1期70-84,共15页
In recent years, variable selection based on penalty likelihood methods has aroused great concern. Based on the Gibbs sampling algorithm of asymmetric Laplace distribution, this paper considers the quantile regression... In recent years, variable selection based on penalty likelihood methods has aroused great concern. Based on the Gibbs sampling algorithm of asymmetric Laplace distribution, this paper considers the quantile regression with adaptive Lasso and Lasso penalty from a Bayesian point of view. Under the non-Bayesian and Bayesian framework, several regularization quantile regression methods are systematically compared for error terms with different distributions and heteroscedasticity. Under the error term of asymmetric Laplace distribution, statistical simulation results show that the Bayesian regularized quantile regression is superior to other distributions in all quantiles. And based on the asymmetric Laplace distribution, the Bayesian regularized quantile regression approach performs better than the non-Bayesian approach in parameter estimation and prediction. Through real data analyses, we also confirm the above conclusions. 展开更多
关键词 ASYMMETRIC LAPLACE Distribution Gibbs Sampling Adaptive Lasso Lasso BAYESIAN regularIZATION QUANTILE regression
在线阅读 下载PDF
PARTIAL LEAST-SQUARES(PLS)REGRESSION AND SPECTROPHOTOMETRY AS APPLIED TO THE ANALYSIS OF MULTICOMPONENT MIXTURES
8
作者 Xin An LIU Le Ming SHI +4 位作者 Zhi Hong XU Zhong Xiao PAN Zhi Liang LI Ying GAO Laboratory No.502,Institute of Chemical Defense,Beijing 102205 Laboratory of Computer Chemistry,Institute of Chemical Metallurgy,Chinese Academy of Sciences,Beijing 100080 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第3期233-236,共4页
The UV absorption spectra of o-naphthol,α-naphthylamine,2,7-dihydroxy naphthalene,2,4-dimethoxy ben- zaldehyde and methyl salicylate,overlap severely;therefore it is impossible to determine them in mixtures by tradit... The UV absorption spectra of o-naphthol,α-naphthylamine,2,7-dihydroxy naphthalene,2,4-dimethoxy ben- zaldehyde and methyl salicylate,overlap severely;therefore it is impossible to determine them in mixtures by traditional spectrophotometric methods.In this paper,the partial least-squares(PLS)regression is applied to the simultaneous determination of these compounds in mixtures by UV spectrophtometry without any pretreatment of the samples.Ten synthetic mixture samples are analyzed by the proposed method.The mean recoveries are 99.4%,996%,100.2%,99.3% and 99.1%,and the relative standard deviations(RSD) are 1.87%,1.98%,1.94%,0.960% and 0.672%,respectively. 展开更多
关键词 PLS)regression AND SPECTROPHOTOMETRY AS APPLIED TO THE ANALYSIS OF MULTICOMPONENT MIXTURES PARTIAL least-squareS AS
在线阅读 下载PDF
Quantile Regression Based on Laplacian Manifold Regularizer with the Data Sparsity in <i>l</i>1 Spaces
9
作者 Ru Feng Shuang Chen Lanlan Rong 《Open Journal of Statistics》 2017年第5期786-802,共17页
In this paper, we consider the regularized learning schemes based on l1-regularizer and pinball loss in a data dependent hypothesis space. The target is the error analysis for the quantile regression learning. There i... In this paper, we consider the regularized learning schemes based on l1-regularizer and pinball loss in a data dependent hypothesis space. The target is the error analysis for the quantile regression learning. There is no regularized condition with the kernel function, excepting continuity and boundness. The graph-based semi-supervised algorithm leads to an extra error term called manifold error. Part of new error bounds and convergence rates are exactly derived with the techniques consisting of l1-empirical covering number and boundness decomposition. 展开更多
关键词 SEMI-SUPERVISED Learning Conditional QUANTILE regression l1-regularizer Manifold-regularizer Pinball Loss
在线阅读 下载PDF
Semiparametric Regression and Model Refining 被引量:13
10
作者 SUN Haiyan WU Yun 《Geo-Spatial Information Science》 2002年第4期10-13,共4页
This paper presents a semiparametric adjustment method suitable for general cases.Assuming that the regularizer matrix is positive definite,the calculation method is discussed and the corresponding formulae are presen... This paper presents a semiparametric adjustment method suitable for general cases.Assuming that the regularizer matrix is positive definite,the calculation method is discussed and the corresponding formulae are presented.Finally,a simulated adjustment problem is constructed to explain the method given in this paper.The results from the semiparametric model and G_M model are compared.The results demonstrate that the model errors or the systematic errors of the observations can be detected correctly with the semiparametric estimate method. 展开更多
关键词 model error systematric error semiparametric regression model refine regularizer matrix smoothing parameter
在线阅读 下载PDF
Latent Variable Regression for Supervised Modeling and Monitoring 被引量:5
11
作者 Qinqin Zhu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第3期800-811,共12页
A latent variable regression algorithm with a regularization term(r LVR) is proposed in this paper to extract latent relations between process data X and quality data Y. In rLVR,the prediction error between X and Y is... A latent variable regression algorithm with a regularization term(r LVR) is proposed in this paper to extract latent relations between process data X and quality data Y. In rLVR,the prediction error between X and Y is minimized, which is proved to be equivalent to maximizing the projection of quality variables in the latent space. The geometric properties and model relations of rLVR are analyzed, and the geometric and theoretical relations among r LVR, partial least squares, and canonical correlation analysis are also presented. The rLVR-based monitoring framework is developed to monitor process-relevant and quality-relevant variations simultaneously. The prediction and monitoring effectiveness of rLVR algorithm is demonstrated through both numerical simulations and the Tennessee Eastman(TE) process. 展开更多
关键词 Data ANALYTICS inferential MONITORING LATENT VARIABLE regression regularIZATION
在线阅读 下载PDF
Partial least squares regression for predicting economic loss of vegetables caused by acid rain 被引量:2
12
作者 王菊 房春生 《Journal of Chongqing University》 CAS 2009年第1期10-16,共7页
To predict the economic loss of crops caused by acid rain,we used partial least squares(PLS) regression to build a model of single dependent variable -the economic loss calculated with the decrease in yield related to... To predict the economic loss of crops caused by acid rain,we used partial least squares(PLS) regression to build a model of single dependent variable -the economic loss calculated with the decrease in yield related to the pH value and levels of Ca2+,NH4+,Na+,K+,Mg2+,SO42-,NO3-,and Cl-in acid rain. We selected vegetables which were sensitive to acid rain as the sample crops,and collected 12 groups of data,of which 8 groups were used for modeling and 4 groups for testing. Using the cross validation method to evaluate the performace of this prediction model indicates that the optimum number of principal components was 3,determined by the minimum of prediction residual error sum of squares,and the prediction error of the regression equation ranges from -2.25% to 4.32%. The model predicted that the economic loss of vegetables from acid rain is negatively corrrelated to pH and the concentrations of NH4+,SO42-,NO3-,and Cl-in the rain,and positively correlated to the concentrations of Ca2+,Na+,K+ and Mg2+. The precision of the model may be improved if the non-linearity of original data is addressed. 展开更多
关键词 acid rain partial least-squares regression economic loss dose-response model
在线阅读 下载PDF
Super-resolution least-squares prestack Kirchhoff depth migration using the L_0-norm
13
作者 Wu Shao-Jiang Wang Yi-Bo +1 位作者 Ma Yue and Chang Xu 《Applied Geophysics》 SCIE CSCD 2018年第1期69-77,148,149,共11页
Least-squares migration (LSM) is applied to image subsurface structures and lithology by minimizing the objective function of the observed seismic and reverse-time migration residual data of various underground refl... Least-squares migration (LSM) is applied to image subsurface structures and lithology by minimizing the objective function of the observed seismic and reverse-time migration residual data of various underground reflectivity models. LSM reduces the migration artifacts, enhances the spatial resolution of the migrated images, and yields a more accurate subsurface reflectivity distribution than that of standard migration. The introduction of regularization constraints effectively improves the stability of the least-squares offset. The commonly used regularization terms are based on the L2-norm, which smooths the migration results, e.g., by smearing the reflectivities, while providing stability. However, in exploration geophysics, reflection structures based on velocity and density are generally observed to be discontinuous in depth, illustrating sparse reflectance. To obtain a sparse migration profile, we propose the super-resolution least-squares Kirchhoff prestack depth migration by solving the L0-norm-constrained optimization problem. Additionally, we introduce a two-stage iterative soft and hard thresholding algorithm to retrieve the super-resolution reflectivity distribution. Further, the proposed algorithm is applied to complex synthetic data. Furthermore, the sensitivity of the proposed algorithm to noise and the dominant frequency of the source wavelet was evaluated. Finally, we conclude that the proposed method improves the spatial resolution and achieves impulse-like reflectivity distribution and can be applied to structural interpretations and complex subsurface imaging. 展开更多
关键词 SUPER-RESOLUTION least-squareS Kirchhoff depth migration L0-norm regularIZATION
在线阅读 下载PDF
A meshless method for the nonlinear generalized regularized long wave equation
14
作者 王聚丰 白福浓 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第3期35-42,共8页
This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtain... This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtained and is solved using the iteration method. A theorem on the convergence of the iterative process is presented and proved using theorems of the infinity norm. Compared with numerical methods based on mesh, the meshless method for the GRLW equation only requires the.scattered nodes instead of meshing the domain of the problem. Some examples, such as the propagation of single soliton and the interaction of two solitary waves, are given to show the effectiveness of the meshless method. 展开更多
关键词 generalized regularized long wave equation meshless method moving least-squares approximation CONVERGENCE
在线阅读 下载PDF
Linear Maximum Likelihood Regression Analysis for Untransformed Log-Normally Distributed Data
15
作者 Sara M. Gustavsson Sandra Johannesson +1 位作者 Gerd Sallsten Eva M. Andersson 《Open Journal of Statistics》 2012年第4期389-400,共12页
Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in regression analysis, in order to stabilize the variance. Regression analysis on log-transformed dat... Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in regression analysis, in order to stabilize the variance. Regression analysis on log-transformed data estimates the relative effect, whereas it is often the absolute effect of a predictor that is of interest. We propose a maximum likelihood (ML)-based approach to estimate a linear regression model on log-normal, heteroscedastic data. The new method was evaluated with a large simulation study. Log-normal observations were generated according to the simulation models and parameters were estimated using the new ML method, ordinary least-squares regression (LS) and weighed least-squares regression (WLS). All three methods produced unbiased estimates of parameters and expected response, and ML and WLS yielded smaller standard errors than LS. The approximate normality of the Wald statistic, used for tests of the ML estimates, in most situations produced correct type I error risk. Only ML and WLS produced correct confidence intervals for the estimated expected value. ML had the highest power for tests regarding β1. 展开更多
关键词 HETEROSCEDASTICITY MAXIMUM LIKELIHOOD Estimation LINEAR regression Model Log-Normal Distribution Weighed least-squareS regression
在线阅读 下载PDF
High-Dimensional Regression on Sparse Grids Applied to Pricing Moving Window Asian Options
16
作者 Stefan Dirnstorfer Andreas J. Grau Rudi Zagst 《Open Journal of Statistics》 2013年第6期427-440,共14页
The pricing of moving window Asian option with an early exercise feature is considered a challenging problem in option pricing. The computational challenge lies in the unknown optimal exercise strategy and in the high... The pricing of moving window Asian option with an early exercise feature is considered a challenging problem in option pricing. The computational challenge lies in the unknown optimal exercise strategy and in the high dimensionality required for approximating the early exercise boundary. We use sparse grid basis functions in the Least Squares Monte Carlo approach to solve this “curse of dimensionality” problem. The resulting algorithm provides a general and convergent method for pricing moving window Asian options. The sparse grid technique presented in this paper can be generalized to pricing other high-dimensional, early-exercisable derivatives. 展开更多
关键词 Sparse Grid regression least-squareS Monte Carlo MOVING WINDOW Asian OPTION
在线阅读 下载PDF
Regression Analysis of a Kind of Trapezoidal Fuzzy Numbers Based on a Shape Preserving Operator
17
作者 Jie Sun Qiujun Lu 《Journal of Data Analysis and Information Processing》 2017年第3期96-114,共19页
Fuzzy regression provides more approaches for us to deal with imprecise or vague problems. Traditional fuzzy regression is established on triangular fuzzy numbers, which can be represented by trapezoidal numbers. The ... Fuzzy regression provides more approaches for us to deal with imprecise or vague problems. Traditional fuzzy regression is established on triangular fuzzy numbers, which can be represented by trapezoidal numbers. The independent variables, coefficients of independent variables and dependent variable in the regression model are fuzzy numbers in different times and TW, the shape preserving operator, is the only T-norm which induces a shape preserving multiplication of LL-type of fuzzy numbers. So, in this paper, we propose a new fuzzy regression model based on LL-type of trapezoidal fuzzy numbers and TW. Firstly, we introduce the basic fuzzy set theories, the basic arithmetic propositions of the shape preserving operator and a new distance measure between trapezoidal numbers. Secondly, we investigate the specific model algorithms for FIFCFO model (fuzzy input-fuzzy coefficient-fuzzy output model) and introduce three advantages of fit criteria, Error Index, Similarity Measure and Distance Criterion. Thirdly, we use a design set and two reference sets to make a comparison between our proposed model and the reference models and determine their goodness with the above three criteria. Finally, we draw the conclusion that our proposed model is reasonable and has better prediction accuracy, but short of robust, comparing to the reference models by the three goodness of fit criteria. So, we can expand our traditional fuzzy regression model to our proposed new model. 展开更多
关键词 FUZZY Sets LL-Type of Trapezoidal FUZZY NUMBERS least-squareS DEVIATIONS Shape Preserving OPERATOR FUZZY Linear regression
在线阅读 下载PDF
Fuzzy Varying Coefficient Bilinear Regression of Yield Series
18
作者 Ting He Qiujun Lu 《Journal of Data Analysis and Information Processing》 2015年第3期43-54,共12页
We construct a fuzzy varying coefficient bilinear regression model to deal with the interval financial data and then adopt the least-squares method based on symmetric fuzzy number space. Firstly, we propose a varying ... We construct a fuzzy varying coefficient bilinear regression model to deal with the interval financial data and then adopt the least-squares method based on symmetric fuzzy number space. Firstly, we propose a varying coefficient model on the basis of the fuzzy bilinear regression model. Secondly, we develop the least-squares method according to the complete distance between fuzzy numbers to estimate the coefficients and test the adaptability of the proposed model by means of generalized likelihood ratio test with SSE composite index. Finally, mean square errors and mean absolutely errors are employed to evaluate and compare the fitting of fuzzy auto regression, fuzzy bilinear regression and fuzzy varying coefficient bilinear regression models, and also the forecasting of three models. Empirical analysis turns out that the proposed model has good fitting and forecasting accuracy with regard to other regression models for the capital market. 展开更多
关键词 FUZZY VARYING COEFFICIENT BILINEAR regression Model FUZZY Financial Assets YIELD least-squareS Method Generalized Likelihood Ratio Test Forecast
在线阅读 下载PDF
Wolfe线搜索下一个新的共轭梯度法及其在信号处理中的应用
19
作者 刘莹 朱志斌 +1 位作者 丁玥宏 黄嘉琪 《应用数学》 北大核心 2025年第1期104-113,共10页
本文考虑无约束优化问题,提出了一个新的共轭梯度方法,命名为NYHS共轭梯度法.并且证明了在标准Wolfe线搜索下,NYHS方法具有下降性和全局收敛性.将本文提出的算法应用于信号处理中的图像恢复问题和正则化逻辑回归模型,结果表明本文提出... 本文考虑无约束优化问题,提出了一个新的共轭梯度方法,命名为NYHS共轭梯度法.并且证明了在标准Wolfe线搜索下,NYHS方法具有下降性和全局收敛性.将本文提出的算法应用于信号处理中的图像恢复问题和正则化逻辑回归模型,结果表明本文提出的方法是有效的. 展开更多
关键词 无约束优化 共轭梯度法 全局收敛 图像恢复 正则化逻辑回归
在线阅读 下载PDF
An enrichment model using regular health examination data for early detection of colorectal cancer 被引量:3
20
作者 Qiang Shi Zhaoya Gao +8 位作者 Pengze Wu Fanxiu Heng Fuming Lei Yanzhao Wang Qingkun Gao Qingmin Zeng Pengfei Niu Cheng Li Jin Gu 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2019年第4期686-698,共13页
Objective: Challenges remain in current practices of colorectal cancer(CRC) screening, such as low compliance,low specificities and expensive cost. This study aimed to identify high-risk groups for CRC from the genera... Objective: Challenges remain in current practices of colorectal cancer(CRC) screening, such as low compliance,low specificities and expensive cost. This study aimed to identify high-risk groups for CRC from the general population using regular health examination data.Methods: The study population consist of more than 7,000 CRC cases and more than 140,000 controls. Using regular health examination data, a model detecting CRC cases was derived by the classification and regression trees(CART) algorithm. Receiver operating characteristic(ROC) curve was applied to evaluate the performance of models. The robustness and generalization of the CART model were validated by independent datasets. In addition, the effectiveness of CART-based screening was compared with stool-based screening.Results: After data quality control, 4,647 CRC cases and 133,898 controls free of colorectal neoplasms were used for downstream analysis. The final CART model based on four biomarkers(age, albumin, hematocrit and percent lymphocytes) was constructed. In the test set, the area under ROC curve(AUC) of the CART model was 0.88 [95%confidence interval(95% CI), 0.87-0.90] for detecting CRC. At the cutoff yielding 99.0% specificity, this model’s sensitivity was 62.2%(95% CI, 58.1%-66.2%), thereby achieving a 63-fold enrichment of CRC cases. We validated the robustness of the method across subsets of test set with diverse CRC incidences, aging rates, genders ratio, distributions of tumor stages and locations, and data sources. Importantly, CART-based screening had the higher positive predictive value(1.6%) than fecal immunochemical test(0.3%).Conclusions: As an alternative approach for the early detection of CRC, this study provides a low-cost method using regular health examination data to identify high-risk individuals for CRC for further examinations. The approach can promote early detection of CRC especially in developing countries such as China, where annual health examination is popular but regular CRC-specific screening is rare. 展开更多
关键词 Classification and regression trees COLORECTAL cancer regular health examination DATA ROUTINE lab test biomarkers
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部