Studying the causes of summer(June–July–August)precipitation anomalies in the middle and lower reaches of the Yangtze River(MLYR)and accurately predicting rainy season precipitation are important to society and the ...Studying the causes of summer(June–July–August)precipitation anomalies in the middle and lower reaches of the Yangtze River(MLYR)and accurately predicting rainy season precipitation are important to society and the economy.In recent years,the sea surface temperature(SST)trend factor has been used to construct regression models for summer precipitation.In this study,through correlation analysis,winter SST anomaly predictors and the winter Central Pacific SST trend predictor(CPT)are identified as closely related to the following MLYR summer precipitation(YRSP).CPT can influence YRSP by inducing anomalous circulations over the North Pacific,guiding warm and moist air northward,and inhibiting the development of the anomalous anticyclone over the Northwest Pacific.This has improved the predictive skill of the seasonal regression model for YRSP.After incorporating the CPT,the correlation coefficient of the YRSP regression model improved by 40%,increasing from 0.45 to 0.63,and the root mean squared error decreased by 22%,from 1.15 to 0.90.展开更多
Land–atmosphere coupling and sea surface temperature(SST)anomalies both have essential impacts on weather and climate extremes.Based on the ERA5 reanalysis dataset and the CESM1.2.2 model,this study investigates the ...Land–atmosphere coupling and sea surface temperature(SST)anomalies both have essential impacts on weather and climate extremes.Based on the ERA5 reanalysis dataset and the CESM1.2.2 model,this study investigates the influence of land–atmosphere coupling on summer extreme hot-humid events(EHHE)over southern Eurasia under different SST backgrounds.The results suggest that coupling causes near-surface air temperature increases that exceed 0.5℃.From 1961 to 2020,the frequency of EHHE has continuously increased,and is closely related to soil moisture anomalies in the northern Indian Peninsula(IDP)and the middle and lower reaches of the Yangtze River(YRB).Numerical simulations further demonstrate that land–atmosphere coupling raises the risk of EHHE by 25.4%.In a typical El Niño SST background state,intensified land–atmosphere coupling tends to produce notable increases in the frequency of EHHE.The dominant processes that land–atmosphere coupling affects the EHHE variations are evidently different between these two regions.Land surface thermal anomalies predominate in the IDP,while moisture conditions are more critical in the YRB.When warm SST anomalies exist,dry soil anomalies in the IDP are prominent,and evaporation is constrained,increasing sensible heat flux.Positive geopotential height anomalies are significant,combined with adiabatic warming induced by descending motion and a noticeable warm center in the near-surface atmosphere.The southward shift of the westerly jet enhances divergence over YRB.The anticyclonic circulation anomalies over the western Pacific are conducive to guiding moisture transport to the YRB,providing a favorable circulation background for the development of summer EHHE.展开更多
The early life stages of marine organisms are pivotal in shaping community dynamics and resource availability.In this study,we focused on Portunus trituberculatus,a crustacean integral to China's fisheries economy...The early life stages of marine organisms are pivotal in shaping community dynamics and resource availability.In this study,we focused on Portunus trituberculatus,a crustacean integral to China's fisheries economy,and examined the effect of sea surface temperature(SST)in its critical early life stages on subsequent yields.To analyze the correlation between SST in different larval stages and the corresponding yield of P.trituberculatus,we simulated the transport and distribution of larvae from 2014 to 2022 by employing circulation models and Lagrangian particle tracking experiments(LPTE).In the five years(2014,2015,2016,2019,and 2020),particles were transported in a northwestern direction and moved in the direction of low SST.The distribution of particles in the megalopa stage(M stage)were located in the region of the lower temperature.In 2017,2018,and 2021,the particles were transported in a northeastern direction but they did not move with the gradient of low SST in these years,and the particles in the last M stage were located in the region where the SST was at the peak of the time period.In 2022,the distribution was observed for most of the particles in the southwestern part of Zhejiang coast,a small part of them were transported in the northwestern direction and a small amount of particles was distributed offshore along the northern area of the Zhejiang coast.The correlations between the SST at each stage of larvae with the corresponding year's yield showed that the yield of P.trituberculatus decreased significantly(R=-0.772,P=0.015)with increasing SST at the M stage.This study preliminarily explains the correlation between SST at the larval stage and the yield of P.trituberculatus and provides essential information for scientific stock enhancement in the future.展开更多
The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated...The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated against the products from Haiyang-2B(HY-2B)in 2021,obtaining a root mean squared error(RMSE)of 0.45 with a correlation of 0.96 and scatter index of 0.18.The wave-induced effects,i.e.,wave breaking and mixing induced by nonbearing waves resulting in changes in radiation stress and Stokes drift,were calculated from WW3,ERA-5 wind,SST,and salinity data from the National Centers for Environmental Prediction and were taken as forcing fields in the Stony Brook Parallel Ocean Model.The results showed that an RMSE of 0.81℃ with wave-induced effects was less than the RMSE of 1.11℃ achieved without the wave term compared with the simulated SST with the measurements from Argos.Considering the four wave effects and sea ice freezing,the SST in the Arctic Ocean decreased by up to 1℃ in winter.Regression analysis revealed that the SWH was linear in SST(values without subtraction of waves)in summer and autumn,but this behavior was not observed in spring or winter due to the presence of sea ice.The interannual variation also presented a negative relationship between the difference in SST and SWH.展开更多
The aim of this study is to investigate the sea surface temperature(SST) cooling as typhoons pass the Kuroshio Current.A numerical circulation model,denoted as the Stony Brook Parallel Ocean Model(sbPOM),was used to s...The aim of this study is to investigate the sea surface temperature(SST) cooling as typhoons pass the Kuroshio Current.A numerical circulation model,denoted as the Stony Brook Parallel Ocean Model(sbPOM),was used to simulate the SST,which includes four wave-induced effect terms(i.e.,radiation stress,nonbreaking waves,Stokes drift,and breaking waves) simulated using the third-generation wave model,called WAVEWATCH-Ⅲ(WW3).The significant wave height(SWH) measurements from the Jason-2 altimeter were used to validate the WW3-simulated results,yielding a root mean square error(RMSE) of less than 0.50 m and a correlation coefficient(COR) of approximately 0.93.The water temperature measured from the Advanced Research and Global Observation Satellite was applied to validate the model simulation.Accordingly,the RMSE of the SST is 0.92℃ with a COR of approximately 0.99.As revealed in the sbPOM-simulated SST fields,a reduction in the SST at the Kuroshio Current region was observed as a typhoon passed,although the water temperature of the Kuroshio Current is relatively high.The variation of the SST is consistent with that of the current,whereas the maximum SST lagged behind the occurrence of the peak SWH.Moreover,the Stokes drift plays an important role in the SST cooling after analyzing four wave-induced terms in the background of the Kuroshio Current.The sensitivity experiment also showed that the accuracy of the water temperature was significantly reduced when including breaking waves,which play a negative role in the inside part of the ocean.The variation in the mean mixing layer depth(MLD) showed that a typhoon could enhance the mean MLD in the Kuroshio Current area in September and October,whereas a typhoon has little influence on the mean MLD in the Kuroshio Current area in May.Moreover,the mean MLD rapidly decreased with the weakening of the strong wind force and wave-induced effects when a typhoon crossed the Kuroshio Current.展开更多
Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surfa...Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surface temperature(SST),sea surface salinity(SSS),mixed layer depth(MLD),and euphotic zone depth(EZD) in the northern B ay of Bengal(BoB) during three monsoon seasons were examined in this study based on remote sensing data for the period 2005 to 2020.To compare the NPP distribution between the coastal zones and open BoB,the study area was divided into five zones(Z1-Z5).Results suggest that most productive zones Z2 and Zl are located at the head bay area and are directly influenced by freshwater discharge together with riverine sediment and nutrient loads.Across Z1-Z5,the NPP ranges from 5 315.38 mg/(m^(2)·d) to 346.7 mg/(m^(2)·d)(carbon,since then the same).The highest monthly average NPP of 5 315.38 mg/(m^(2)·d) in February and 5 039.36 mg/(m^(2)·d) in June were observed from Z2,while the lowest monthly average of 346.72 mg/(m^(2)·d) was observed in March from Z4,which is an oceanic zone.EZD values vary from 6-154 m for the study area,and it has an inverse correlation with NPP concentration.EZD is deeper during the summer season and shallower during the wintertime,with a corresponding increase in productivity.Throughout the year,monthly SST shows slight fluctuation for the entire study area,and statistical analysis shows a significant correlation among NPP,and EZD,overall positive between NPP and MLD,whereas no significant correlation among SSS,and SST for the northern BoB.Long-term trends in SST and productivity were significantly po sitive in head bay zones but negatively productive in the open ocean.The findings in this study on the distribution of NPP,SST,SSS,MLD,and EZD and their seasonal variability in five different zones of BoB can be used to further improve the management of marine resources and overall environmental condition in response to climate changes in BoB as they are of utmost relevance to the fisheries for the three bordering countries.展开更多
A Hybrid Coordinate Ocean Model (HYCOM) is used to simulate the sea surface temperature of the Tropical and North Pacific. Based on the different combinations of two air-Sea flux data sets (COADS and ECMWF) and tw...A Hybrid Coordinate Ocean Model (HYCOM) is used to simulate the sea surface temperature of the Tropical and North Pacific. Based on the different combinations of two air-Sea flux data sets (COADS and ECMWF) and two bulk parameter formulas (non-constant and constant), four numerical experiments are carried out. The following conclusions can be deduced from the numerical results. (1) The numerical results using non-constant bulk parameter formula are much better than those using constant one. In the Pacific area from 40°N to 20°S, the annual average SST obtained from the experiment using non-constant bulk parameter formula is 0.21 ℃ higher than that from the satellite-based SST climatology (the pathfinder data). However, the difference is 0.63 ℃ for the experiment when the using constant one. (2) HYCOM successfully simulates the monthly variation of climatological SST in tropical and north Pacific basins and monthly spatial variation of Western Pacific Warm Pool. Especially in the Pacific area from 40°N to 20°S, the difference of the seasonal averaged SST between pathfinder data and the result of experiment 2 (using COADS data set and non-constant bulk parameter formula) is only about 0.02 ℃. (3)The simulation results using different Air-Sea flux data are different and the difference is very large in some regions. In the northwest of the model region, the annual average SST obtained from experiment 2 (using COADS data set) is 1℃ higher than that obtained from experiment 4 (using ECMWF data set). Contrarily, the result of experiment 4 is 1 ℃ larger than that of experiment 2 in the southeast of the model region. The largest difference is about 4 ℃ occurred near the area of 58°N, 140°E and the Bohai sea.展开更多
The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the...The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the people and the socio-economic development of the area. By using precipitation data and sea surface temperature data, this study reveals the spatial and temporal variation patterns of extreme precipitation during the East African short rainy season. Key findings include significant rainfall variability, with Tanzania experiencing the highest amounts in December due to the southward shift of the Intertropical Convergence Zone (ITCZ), while other regions receive less than 100 mm. Extreme rainfall events (90th percentiles) are evenly distributed, averaging 2 to 10 days annually. Historical data shows maximum seasonal rainfall often peaks at 15 mm, with frequent occurrences of daily rainfall exceeding 10 mm during OND. Additionally, a positive correlation (0.48) between OND precipitation extremes and Indian Ocean Dipole (IOD) anomalies is statistically significant. These findings highlight the climatic variability and potential trends in extreme rainfall events in East Africa, providing valuable insights for regional climate adaptation strategies.展开更多
The variability of the sea surface temperature(SST) in the China seas has been studied in seasonal,interannual and interdecadal scales based on the monthly data of HadISST spanning from 1870 to 2007. The main result...The variability of the sea surface temperature(SST) in the China seas has been studied in seasonal,interannual and interdecadal scales based on the monthly data of HadISST spanning from 1870 to 2007. The main results obtained are SST in the China offshore changes most actively at the seasonal scale with the intensity diminishing from north to south,as the temperature differences between summer and winter reaching 17 and 4 C in the northern and southern areas,respectively. Moreover,seasonal variation near the coastal regions seems relatively stronger than that far from the coastline;significant interannual variations are detected,with the largest positive anomaly occurring in 1998 in the overall area. But as far as different domains are concerned,there exists great diversity,and the difference is also found between winter and summer. Differed from the seasonal variations,where the strongest interannual variability takes place,resides to the south of that of the seasonal ones in the northern section,nevertheless in the South China Sea,the most significant interannual variability is found in the deep basin;interdecadal changes of summer,winter and annual mean SST in different domains likewise present various features. In addition,a common dominant warming in recent 20 a are found in the overall China offshore with the strongest center located in the vicinity of the Changjiang Estuary in the East China Sea,which intensifies as high as 1.3 C during the past 130 a.展开更多
Large-scale water transport is one of the key factors that affect sea surface temperature anomaly(SSTA) in the eastern equatorial Pacific(EEP).The relationship between the wave transport in the tropical Pacific an...Large-scale water transport is one of the key factors that affect sea surface temperature anomaly(SSTA) in the eastern equatorial Pacific(EEP).The relationship between the wave transport in the tropical Pacific and the SSTA in the EEP is examined by different methods,including band-pass filtering,period analysis,correlation analysis,significant analysis,and empirical orthogonal function(EOF) analysis.We have found that the eastward shift of the wave transport anomaly in the tropical Pacific,with a period of 2 a and enhancing the transport of warm waters from the western Pacific warm pool,precedes the increase of sea surface temperature(SST) in the EEP.The wave transport and the SSTA in the EEP have a maximum correlation of 0.65 with a time-lag of 6 months(transport variation precedes the temperature).The major periods(3.7 a and 2.45 a) of the wave transport variability,as revealed by the EOF analysis,appear to be consistent with the SSTA oscillation cycle in the EEP.Based on the first occurrence of a significant SSTA in the Ni?o 3 region(5°S–5°N,90°–150°W),two types of warm events are defined.The wave transport anomalies in two types present predominantly the west anomaly in the tropical Pacific,it is that the wave transport continues transport warm water from west to east before the onset of the warm event.The impact of wave-induced water transport on the SSTA in the EEP is confirmed by the heat flux of the wave transport.The wave transport exerts significant effect on the SSTA variability in the EEP and thus is not neglectable in the further studies.展开更多
Knowledge of sea surface temperature(SST)behaviour is vital for long-term climate scenarios.This study highlights essential outcomes about the distinguishable and unsurprising warming of the SST along the southern bor...Knowledge of sea surface temperature(SST)behaviour is vital for long-term climate scenarios.This study highlights essential outcomes about the distinguishable and unsurprising warming of the SST along the southern border of the Levantine Basin.The analysis is based on monthly SST data for the period 1948-2018.The southern Levantine Basin has undergone SST increase,during the last 71 years.In this study,a consistent warming trend has been found for the analysed SST data series,with a rate of 0.04℃/a,i.e.,0.4℃/(10 a).From 1975 to 1991 the mean annual SST was 17.1℃,and this increased to be 19.2℃,over the period 2002-2018.Results revealed two opposite trends of variability:a decreasing trend(−0.06℃/a)over the period 1975-1991,and an increasing trend(0.2℃/a)from 2002 to 2018.Over the period 1948-2018,positive mean annual SST anomalies had an average of 1.8℃,and negative anomalies had an average of−1.1℃.The lowest SST total increase was found from January to April,with values about 0.03℃,while the highest warming appeared from June to September.The driving mechanisms behind the SST changes need to be more investigated,to understand the future trends and impacts of climate change in the Levantine Basin.展开更多
With the singular value decomposition (SVD), correlation analysis has been conducted between the Pacific Ocean sea surface temperature (SST) and northwestern China precipitation over March May (MAM). The result shows ...With the singular value decomposition (SVD), correlation analysis has been conducted between the Pacific Ocean sea surface temperature (SST) and northwestern China precipitation over March May (MAM). The result shows that there is good relationship between the North Pacific and spring precipitation in northwestern China. When the SST is of the peak El Ni駉 phase, precipitation is less over this part of the country except for the Qinghai-Tibetan Plateau; when the SST for the months DJF is of the mature El Ni駉 phase, precipitation is more over the region in the subsequent March May; when the North Pacific SST for DJF is of the La Ni馻 pattern, precipitation is less over the plateau in the subsequent March May. For the Pacific SST, the westerly drift, kuroshio current, Californian current and north equatorial current are all significantly correlating with the March May precipitation in northwestern China. Specifically, the SST in DJF over the kuroshio current region is out of phase with the precipitation in northern Xinjiang, i.e. when the former is low, the latter is more. In northwestern China, regions in which March May precipitation response to the variation of SST in the Pacific Ocean are northern Xinjiang, the Qinghai-Tibetan Plateau and areas off its northeastern part, the desert basin and western part of the Corridor of the Great Bend of Yellow River valley (Corridor).展开更多
Changes in sea surface temperature (SST), seawater oxygen isotope (δ18Osw), and local salinity proxy (δ18Osw-ss ) in the past 155 ka were studied using a sediment core (MD06-3052) from the northern edge of t...Changes in sea surface temperature (SST), seawater oxygen isotope (δ18Osw), and local salinity proxy (δ18Osw-ss ) in the past 155 ka were studied using a sediment core (MD06-3052) from the northern edge of the western Pacific Warm Pool (WPWP), within the flow path of the bifurcation of the North Equatorial Current. Our records reveal a lead-lag relationship between paired Mg/Ca-SST and δ18O during Termination II and the last interglacial period. Similarity in SST between our site and the Antarctic temperature proxy and in CO2 profile showed a close connection between the WPWP and the Antarctic. Values of 818Osw exhibited very similar variations to those of mean ocean δ18Osw, owing to the past sea-level changes on glacial-interglacial timescale. Calculated values of δ18O reflect a more saline condition during high local summer insolation (SI) periods. Such correspondence between δ18O and local SI in the WPWP may reflect complex interaction between ENSO and monsoon, which was stimulated by changes in solar irradiance and their influence on the local hydrologic cycle. This then caused a striking reorganization of atmospheric circulation over the WPWP.展开更多
The basic principles of sea surface temperature (SST) remote sensing using infrared and microwave radiometers are introduced, and the differences between two sensors for retrieving sea surface temperature are invest...The basic principles of sea surface temperature (SST) remote sensing using infrared and microwave radiometers are introduced, and the differences between two sensors for retrieving sea surface temperature are investigated. The ground resolution, atmospheric effect, sea surface wind, skin depth and so on have important influence on precision of sea surface temperature retrieved by two sensors. The better understanding of the advantage and disadvantage of sea surface temperature detected by infrared and microwave radiometers would help us to imply SST remote sensing data more effectively and correctly.展开更多
Sea surface temperature (SST) variation in the Subei coastal waters, East China, which is important for the ecological environment of the Yellow Sea where Enteromorphaprolifera blooms frequently, is affected by the ...Sea surface temperature (SST) variation in the Subei coastal waters, East China, which is important for the ecological environment of the Yellow Sea where Enteromorphaprolifera blooms frequently, is affected by the East Asian winter monsoon (EAWM), El Nifio-Southem Oscillation (ENSO), and Pacific Decadal Oscillation (PDO). In this study, correlations between climatic events and SST anomalies (SSTA) around the Subei (North Jiangsu Province, East China) Coast from 1981-2012 are analyzed, using empirical orthogonal function (EOF) and correlation analyses. First, a key region was determined by EOF analysis to represent the Subei coastal waters. Then, coherency analyses were performed on this key region. According to the correlation analysis, the EAWM index has a positive correlation with the spring and summer SSTA of the key region. Furthermore, the Nifio3.4 index is negatively correlated with the spring and summer SSTA of the key region 1 year ahead, and the PDO has significant negative coherency with spring SSTA and negative coherency with summer SSTA in the key region 1 year ahead. Overall, PDO exhibits the most significant impact on SSTA of the key region. In the key region, all these factors are correlated more significantly with SSTA in spring than in summer. This suggests that outbreaks ofEnteromorpha prolifera in the Yellow Sea are affected by global climatic changes, especially the PDO.展开更多
By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation...By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation and their correlations with SST are analyzed.The coupling relationship between the anomalous distribution in summer precipitation and the variation of SST has between studied with the Singular Value Decomposition(SVD) analysis.The increase or decrease of summer precipitation in the Dongting Lake region is closely associated with the SST anomalies in three key regions.The variation of SST in the three key regions has been proved to be a significant previous signal to anomaly of summer rainfall in Dongting region.展开更多
Based on the 18-year (1993-2010) National Centers for Environmental Prediction optimum interpolation sea surface temperature (SST) and simple ocean data assimilation datasets, this study investigated the patterns ...Based on the 18-year (1993-2010) National Centers for Environmental Prediction optimum interpolation sea surface temperature (SST) and simple ocean data assimilation datasets, this study investigated the patterns of the SST anomalies (SSTAs) that occurred in the South China Sea (SCS) during the mature phase of the E1 Nifio/Southem Oscillation. The most dominant characteristic was that of the out- of-phase variation between southwestern and northeastern parts of the SCS, which was influenced primarily by the net surface heat flux and by horizontal thermal advection. The negative SSTA in the northeastern SCS was caused mainly by the loss of heat to the atmosphere and because of the cold-water advection from the western Pacific through the Luzon Strait during E1 Nifio episodes. Conversely, it was found that the anomalous large-scale atmospheric circulation and weakened western boundary current during E1 Nifio episodes led to the development of the positive SSTA in the southwestern SCS.展开更多
Satellite SST(sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the globa...Satellite SST(sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST(near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature(~5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00–15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed(<5 m/s) and columnar water vapor >28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.展开更多
Based on the precipitation data of Meiyu at 37 stations in the valleys of Yangtze and Huaihe Rivers from 1954 to 2001, the temporal-spatial characteristics of Meiyu precipitation and their relationships with the sea s...Based on the precipitation data of Meiyu at 37 stations in the valleys of Yangtze and Huaihe Rivers from 1954 to 2001, the temporal-spatial characteristics of Meiyu precipitation and their relationships with the sea surface temperature in northern Pacific are investigated using such methods as harmonic analysis, empirical orthogonal ftmction (EOF), composite analysis and singular value decomposition (SVD). The results show that the temporal evolution and spatial distribution of Meiyu precipitation are not homogeneous in the Yangtze-Huaihe Rivers basins but with prominent inter-annual and inter-decadal variabilities. The key region between the anomalies of Meiyu precipitation and the monthly sea surface temperature anomalies (SSTA) lies in the west wind drift of North Pacific, which influences the precipitation anomaly of Meiyu precipitation over a key period of time from January to March in the same year. When the SST in the North Pacific west wind drift is warmer (colder) than average during these months, Meiyu precipitation anomalously increases (decreases) in the concurrent year. Results of SVD are consistent with those of composite analysis which pass the significance test of Monte-Carlo at 0.05.展开更多
基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)National Natural Science Foundation of China(42175061)。
文摘Studying the causes of summer(June–July–August)precipitation anomalies in the middle and lower reaches of the Yangtze River(MLYR)and accurately predicting rainy season precipitation are important to society and the economy.In recent years,the sea surface temperature(SST)trend factor has been used to construct regression models for summer precipitation.In this study,through correlation analysis,winter SST anomaly predictors and the winter Central Pacific SST trend predictor(CPT)are identified as closely related to the following MLYR summer precipitation(YRSP).CPT can influence YRSP by inducing anomalous circulations over the North Pacific,guiding warm and moist air northward,and inhibiting the development of the anomalous anticyclone over the Northwest Pacific.This has improved the predictive skill of the seasonal regression model for YRSP.After incorporating the CPT,the correlation coefficient of the YRSP regression model improved by 40%,increasing from 0.45 to 0.63,and the root mean squared error decreased by 22%,from 1.15 to 0.90.
基金supported by the National Science Foundation of China(Grant Nos.42088101 and 42275172).
文摘Land–atmosphere coupling and sea surface temperature(SST)anomalies both have essential impacts on weather and climate extremes.Based on the ERA5 reanalysis dataset and the CESM1.2.2 model,this study investigates the influence of land–atmosphere coupling on summer extreme hot-humid events(EHHE)over southern Eurasia under different SST backgrounds.The results suggest that coupling causes near-surface air temperature increases that exceed 0.5℃.From 1961 to 2020,the frequency of EHHE has continuously increased,and is closely related to soil moisture anomalies in the northern Indian Peninsula(IDP)and the middle and lower reaches of the Yangtze River(YRB).Numerical simulations further demonstrate that land–atmosphere coupling raises the risk of EHHE by 25.4%.In a typical El Niño SST background state,intensified land–atmosphere coupling tends to produce notable increases in the frequency of EHHE.The dominant processes that land–atmosphere coupling affects the EHHE variations are evidently different between these two regions.Land surface thermal anomalies predominate in the IDP,while moisture conditions are more critical in the YRB.When warm SST anomalies exist,dry soil anomalies in the IDP are prominent,and evaporation is constrained,increasing sensible heat flux.Positive geopotential height anomalies are significant,combined with adiabatic warming induced by descending motion and a noticeable warm center in the near-surface atmosphere.The southward shift of the westerly jet enhances divergence over YRB.The anticyclonic circulation anomalies over the western Pacific are conducive to guiding moisture transport to the YRB,providing a favorable circulation background for the development of summer EHHE.
基金Supported by the National Key Research and Development Program of China(No.2019YFD0901304)the Public Welfare Technology Application Research Project of Zhejiang(No.LGN21C190009)the Science and Technology Project of Zhoushan(No.2022C41003)。
文摘The early life stages of marine organisms are pivotal in shaping community dynamics and resource availability.In this study,we focused on Portunus trituberculatus,a crustacean integral to China's fisheries economy,and examined the effect of sea surface temperature(SST)in its critical early life stages on subsequent yields.To analyze the correlation between SST in different larval stages and the corresponding yield of P.trituberculatus,we simulated the transport and distribution of larvae from 2014 to 2022 by employing circulation models and Lagrangian particle tracking experiments(LPTE).In the five years(2014,2015,2016,2019,and 2020),particles were transported in a northwestern direction and moved in the direction of low SST.The distribution of particles in the megalopa stage(M stage)were located in the region of the lower temperature.In 2017,2018,and 2021,the particles were transported in a northeastern direction but they did not move with the gradient of low SST in these years,and the particles in the last M stage were located in the region where the SST was at the peak of the time period.In 2022,the distribution was observed for most of the particles in the southwestern part of Zhejiang coast,a small part of them were transported in the northwestern direction and a small amount of particles was distributed offshore along the northern area of the Zhejiang coast.The correlations between the SST at each stage of larvae with the corresponding year's yield showed that the yield of P.trituberculatus decreased significantly(R=-0.772,P=0.015)with increasing SST at the M stage.This study preliminarily explains the correlation between SST at the larval stage and the yield of P.trituberculatus and provides essential information for scientific stock enhancement in the future.
基金supported by the National Natural Science Foundation of China(Nos.42076238 and 42376174)the Natural Science Foundation of Shanghai(No.23ZR1426900).
文摘The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated against the products from Haiyang-2B(HY-2B)in 2021,obtaining a root mean squared error(RMSE)of 0.45 with a correlation of 0.96 and scatter index of 0.18.The wave-induced effects,i.e.,wave breaking and mixing induced by nonbearing waves resulting in changes in radiation stress and Stokes drift,were calculated from WW3,ERA-5 wind,SST,and salinity data from the National Centers for Environmental Prediction and were taken as forcing fields in the Stony Brook Parallel Ocean Model.The results showed that an RMSE of 0.81℃ with wave-induced effects was less than the RMSE of 1.11℃ achieved without the wave term compared with the simulated SST with the measurements from Argos.Considering the four wave effects and sea ice freezing,the SST in the Arctic Ocean decreased by up to 1℃ in winter.Regression analysis revealed that the SWH was linear in SST(values without subtraction of waves)in summer and autumn,but this behavior was not observed in spring or winter due to the presence of sea ice.The interannual variation also presented a negative relationship between the difference in SST and SWH.
基金supported by the National Natural Science Foundation of China(Nos.42076238,42176012,and 42130402)the National Key Research and Development Program of China(No.2021YFC3101702)the Shanghai Frontiers Research Center of the Hadal Biosphere.
文摘The aim of this study is to investigate the sea surface temperature(SST) cooling as typhoons pass the Kuroshio Current.A numerical circulation model,denoted as the Stony Brook Parallel Ocean Model(sbPOM),was used to simulate the SST,which includes four wave-induced effect terms(i.e.,radiation stress,nonbreaking waves,Stokes drift,and breaking waves) simulated using the third-generation wave model,called WAVEWATCH-Ⅲ(WW3).The significant wave height(SWH) measurements from the Jason-2 altimeter were used to validate the WW3-simulated results,yielding a root mean square error(RMSE) of less than 0.50 m and a correlation coefficient(COR) of approximately 0.93.The water temperature measured from the Advanced Research and Global Observation Satellite was applied to validate the model simulation.Accordingly,the RMSE of the SST is 0.92℃ with a COR of approximately 0.99.As revealed in the sbPOM-simulated SST fields,a reduction in the SST at the Kuroshio Current region was observed as a typhoon passed,although the water temperature of the Kuroshio Current is relatively high.The variation of the SST is consistent with that of the current,whereas the maximum SST lagged behind the occurrence of the peak SWH.Moreover,the Stokes drift plays an important role in the SST cooling after analyzing four wave-induced terms in the background of the Kuroshio Current.The sensitivity experiment also showed that the accuracy of the water temperature was significantly reduced when including breaking waves,which play a negative role in the inside part of the ocean.The variation in the mean mixing layer depth(MLD) showed that a typhoon could enhance the mean MLD in the Kuroshio Current area in September and October,whereas a typhoon has little influence on the mean MLD in the Kuroshio Current area in May.Moreover,the mean MLD rapidly decreased with the weakening of the strong wind force and wave-induced effects when a typhoon crossed the Kuroshio Current.
基金The US Department of State for sponsoring undergraduate exchange program。
文摘Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surface temperature(SST),sea surface salinity(SSS),mixed layer depth(MLD),and euphotic zone depth(EZD) in the northern B ay of Bengal(BoB) during three monsoon seasons were examined in this study based on remote sensing data for the period 2005 to 2020.To compare the NPP distribution between the coastal zones and open BoB,the study area was divided into five zones(Z1-Z5).Results suggest that most productive zones Z2 and Zl are located at the head bay area and are directly influenced by freshwater discharge together with riverine sediment and nutrient loads.Across Z1-Z5,the NPP ranges from 5 315.38 mg/(m^(2)·d) to 346.7 mg/(m^(2)·d)(carbon,since then the same).The highest monthly average NPP of 5 315.38 mg/(m^(2)·d) in February and 5 039.36 mg/(m^(2)·d) in June were observed from Z2,while the lowest monthly average of 346.72 mg/(m^(2)·d) was observed in March from Z4,which is an oceanic zone.EZD values vary from 6-154 m for the study area,and it has an inverse correlation with NPP concentration.EZD is deeper during the summer season and shallower during the wintertime,with a corresponding increase in productivity.Throughout the year,monthly SST shows slight fluctuation for the entire study area,and statistical analysis shows a significant correlation among NPP,and EZD,overall positive between NPP and MLD,whereas no significant correlation among SSS,and SST for the northern BoB.Long-term trends in SST and productivity were significantly po sitive in head bay zones but negatively productive in the open ocean.The findings in this study on the distribution of NPP,SST,SSS,MLD,and EZD and their seasonal variability in five different zones of BoB can be used to further improve the management of marine resources and overall environmental condition in response to climate changes in BoB as they are of utmost relevance to the fisheries for the three bordering countries.
文摘A Hybrid Coordinate Ocean Model (HYCOM) is used to simulate the sea surface temperature of the Tropical and North Pacific. Based on the different combinations of two air-Sea flux data sets (COADS and ECMWF) and two bulk parameter formulas (non-constant and constant), four numerical experiments are carried out. The following conclusions can be deduced from the numerical results. (1) The numerical results using non-constant bulk parameter formula are much better than those using constant one. In the Pacific area from 40°N to 20°S, the annual average SST obtained from the experiment using non-constant bulk parameter formula is 0.21 ℃ higher than that from the satellite-based SST climatology (the pathfinder data). However, the difference is 0.63 ℃ for the experiment when the using constant one. (2) HYCOM successfully simulates the monthly variation of climatological SST in tropical and north Pacific basins and monthly spatial variation of Western Pacific Warm Pool. Especially in the Pacific area from 40°N to 20°S, the difference of the seasonal averaged SST between pathfinder data and the result of experiment 2 (using COADS data set and non-constant bulk parameter formula) is only about 0.02 ℃. (3)The simulation results using different Air-Sea flux data are different and the difference is very large in some regions. In the northwest of the model region, the annual average SST obtained from experiment 2 (using COADS data set) is 1℃ higher than that obtained from experiment 4 (using ECMWF data set). Contrarily, the result of experiment 4 is 1 ℃ larger than that of experiment 2 in the southeast of the model region. The largest difference is about 4 ℃ occurred near the area of 58°N, 140°E and the Bohai sea.
文摘The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the people and the socio-economic development of the area. By using precipitation data and sea surface temperature data, this study reveals the spatial and temporal variation patterns of extreme precipitation during the East African short rainy season. Key findings include significant rainfall variability, with Tanzania experiencing the highest amounts in December due to the southward shift of the Intertropical Convergence Zone (ITCZ), while other regions receive less than 100 mm. Extreme rainfall events (90th percentiles) are evenly distributed, averaging 2 to 10 days annually. Historical data shows maximum seasonal rainfall often peaks at 15 mm, with frequent occurrences of daily rainfall exceeding 10 mm during OND. Additionally, a positive correlation (0.48) between OND precipitation extremes and Indian Ocean Dipole (IOD) anomalies is statistically significant. These findings highlight the climatic variability and potential trends in extreme rainfall events in East Africa, providing valuable insights for regional climate adaptation strategies.
基金The National Natural Science Foundation of China under contract No. 40805035China COPES Program under contract Nos GYHY-200706005 and NSF 90711003
文摘The variability of the sea surface temperature(SST) in the China seas has been studied in seasonal,interannual and interdecadal scales based on the monthly data of HadISST spanning from 1870 to 2007. The main results obtained are SST in the China offshore changes most actively at the seasonal scale with the intensity diminishing from north to south,as the temperature differences between summer and winter reaching 17 and 4 C in the northern and southern areas,respectively. Moreover,seasonal variation near the coastal regions seems relatively stronger than that far from the coastline;significant interannual variations are detected,with the largest positive anomaly occurring in 1998 in the overall area. But as far as different domains are concerned,there exists great diversity,and the difference is also found between winter and summer. Differed from the seasonal variations,where the strongest interannual variability takes place,resides to the south of that of the seasonal ones in the northern section,nevertheless in the South China Sea,the most significant interannual variability is found in the deep basin;interdecadal changes of summer,winter and annual mean SST in different domains likewise present various features. In addition,a common dominant warming in recent 20 a are found in the overall China offshore with the strongest center located in the vicinity of the Changjiang Estuary in the East China Sea,which intensifies as high as 1.3 C during the past 130 a.
文摘Large-scale water transport is one of the key factors that affect sea surface temperature anomaly(SSTA) in the eastern equatorial Pacific(EEP).The relationship between the wave transport in the tropical Pacific and the SSTA in the EEP is examined by different methods,including band-pass filtering,period analysis,correlation analysis,significant analysis,and empirical orthogonal function(EOF) analysis.We have found that the eastward shift of the wave transport anomaly in the tropical Pacific,with a period of 2 a and enhancing the transport of warm waters from the western Pacific warm pool,precedes the increase of sea surface temperature(SST) in the EEP.The wave transport and the SSTA in the EEP have a maximum correlation of 0.65 with a time-lag of 6 months(transport variation precedes the temperature).The major periods(3.7 a and 2.45 a) of the wave transport variability,as revealed by the EOF analysis,appear to be consistent with the SSTA oscillation cycle in the EEP.Based on the first occurrence of a significant SSTA in the Ni?o 3 region(5°S–5°N,90°–150°W),two types of warm events are defined.The wave transport anomalies in two types present predominantly the west anomaly in the tropical Pacific,it is that the wave transport continues transport warm water from west to east before the onset of the warm event.The impact of wave-induced water transport on the SSTA in the EEP is confirmed by the heat flux of the wave transport.The wave transport exerts significant effect on the SSTA variability in the EEP and thus is not neglectable in the further studies.
文摘Knowledge of sea surface temperature(SST)behaviour is vital for long-term climate scenarios.This study highlights essential outcomes about the distinguishable and unsurprising warming of the SST along the southern border of the Levantine Basin.The analysis is based on monthly SST data for the period 1948-2018.The southern Levantine Basin has undergone SST increase,during the last 71 years.In this study,a consistent warming trend has been found for the analysed SST data series,with a rate of 0.04℃/a,i.e.,0.4℃/(10 a).From 1975 to 1991 the mean annual SST was 17.1℃,and this increased to be 19.2℃,over the period 2002-2018.Results revealed two opposite trends of variability:a decreasing trend(−0.06℃/a)over the period 1975-1991,and an increasing trend(0.2℃/a)from 2002 to 2018.Over the period 1948-2018,positive mean annual SST anomalies had an average of 1.8℃,and negative anomalies had an average of−1.1℃.The lowest SST total increase was found from January to April,with values about 0.03℃,while the highest warming appeared from June to September.The driving mechanisms behind the SST changes need to be more investigated,to understand the future trends and impacts of climate change in the Levantine Basin.
基金The effects of sea-land-air interactions in Asian monsoon on the climate change in China" by the Chinese Academy of Sciences (ZKCX2-SW-210) "Mechanisms for the generation of hungriness and optimized model for comprehensive prevention and control" by
文摘With the singular value decomposition (SVD), correlation analysis has been conducted between the Pacific Ocean sea surface temperature (SST) and northwestern China precipitation over March May (MAM). The result shows that there is good relationship between the North Pacific and spring precipitation in northwestern China. When the SST is of the peak El Ni駉 phase, precipitation is less over this part of the country except for the Qinghai-Tibetan Plateau; when the SST for the months DJF is of the mature El Ni駉 phase, precipitation is more over the region in the subsequent March May; when the North Pacific SST for DJF is of the La Ni馻 pattern, precipitation is less over the plateau in the subsequent March May. For the Pacific SST, the westerly drift, kuroshio current, Californian current and north equatorial current are all significantly correlating with the March May precipitation in northwestern China. Specifically, the SST in DJF over the kuroshio current region is out of phase with the precipitation in northern Xinjiang, i.e. when the former is low, the latter is more. In northwestern China, regions in which March May precipitation response to the variation of SST in the Pacific Ocean are northern Xinjiang, the Qinghai-Tibetan Plateau and areas off its northeastern part, the desert basin and western part of the Corridor of the Great Bend of Yellow River valley (Corridor).
基金Supported by the National Natural Science Foundation of China(Nos.41230959,41076030,41106042,40906038,41206044)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA11030104)the Project of Global Change and Air-Sea Interaction
文摘Changes in sea surface temperature (SST), seawater oxygen isotope (δ18Osw), and local salinity proxy (δ18Osw-ss ) in the past 155 ka were studied using a sediment core (MD06-3052) from the northern edge of the western Pacific Warm Pool (WPWP), within the flow path of the bifurcation of the North Equatorial Current. Our records reveal a lead-lag relationship between paired Mg/Ca-SST and δ18O during Termination II and the last interglacial period. Similarity in SST between our site and the Antarctic temperature proxy and in CO2 profile showed a close connection between the WPWP and the Antarctic. Values of 818Osw exhibited very similar variations to those of mean ocean δ18Osw, owing to the past sea-level changes on glacial-interglacial timescale. Calculated values of δ18O reflect a more saline condition during high local summer insolation (SI) periods. Such correspondence between δ18O and local SI in the WPWP may reflect complex interaction between ENSO and monsoon, which was stimulated by changes in solar irradiance and their influence on the local hydrologic cycle. This then caused a striking reorganization of atmospheric circulation over the WPWP.
文摘The basic principles of sea surface temperature (SST) remote sensing using infrared and microwave radiometers are introduced, and the differences between two sensors for retrieving sea surface temperature are investigated. The ground resolution, atmospheric effect, sea surface wind, skin depth and so on have important influence on precision of sea surface temperature retrieved by two sensors. The better understanding of the advantage and disadvantage of sea surface temperature detected by infrared and microwave radiometers would help us to imply SST remote sensing data more effectively and correctly.
基金Supported by the National Basic Research Program of China(973 Program)(No.2010CB950403)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020301)+1 种基金the National Natural Science Foundation of China(No.41176018)the Special Fund for Marine Research in the Public Interest(No.201005006)
文摘Sea surface temperature (SST) variation in the Subei coastal waters, East China, which is important for the ecological environment of the Yellow Sea where Enteromorphaprolifera blooms frequently, is affected by the East Asian winter monsoon (EAWM), El Nifio-Southem Oscillation (ENSO), and Pacific Decadal Oscillation (PDO). In this study, correlations between climatic events and SST anomalies (SSTA) around the Subei (North Jiangsu Province, East China) Coast from 1981-2012 are analyzed, using empirical orthogonal function (EOF) and correlation analyses. First, a key region was determined by EOF analysis to represent the Subei coastal waters. Then, coherency analyses were performed on this key region. According to the correlation analysis, the EAWM index has a positive correlation with the spring and summer SSTA of the key region. Furthermore, the Nifio3.4 index is negatively correlated with the spring and summer SSTA of the key region 1 year ahead, and the PDO has significant negative coherency with spring SSTA and negative coherency with summer SSTA in the key region 1 year ahead. Overall, PDO exhibits the most significant impact on SSTA of the key region. In the key region, all these factors are correlated more significantly with SSTA in spring than in summer. This suggests that outbreaks ofEnteromorpha prolifera in the Yellow Sea are affected by global climatic changes, especially the PDO.
基金Supported by The Special Foundation of Chinese Meteorological Bureau Climate Changes Program(200920)The Special Foundation of Hunan Major Scientific and Technological Research Program(2008FJ1006)~~
文摘By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation and their correlations with SST are analyzed.The coupling relationship between the anomalous distribution in summer precipitation and the variation of SST has between studied with the Singular Value Decomposition(SVD) analysis.The increase or decrease of summer precipitation in the Dongting Lake region is closely associated with the SST anomalies in three key regions.The variation of SST in the three key regions has been proved to be a significant previous signal to anomaly of summer rainfall in Dongting region.
基金Supported by the National Natural Science Foundation of China(No.41306026)the Scientific Research Foundation of the Third Institute of Oceanography,SOA(No.2013009)+1 种基金the National Basic Research Program of China(973 Program)(No.2011CB403504)the National Special Research Fund for Non-Profit Marine Sector(No.201005005-2)
文摘Based on the 18-year (1993-2010) National Centers for Environmental Prediction optimum interpolation sea surface temperature (SST) and simple ocean data assimilation datasets, this study investigated the patterns of the SST anomalies (SSTAs) that occurred in the South China Sea (SCS) during the mature phase of the E1 Nifio/Southem Oscillation. The most dominant characteristic was that of the out- of-phase variation between southwestern and northeastern parts of the SCS, which was influenced primarily by the net surface heat flux and by horizontal thermal advection. The negative SSTA in the northeastern SCS was caused mainly by the loss of heat to the atmosphere and because of the cold-water advection from the western Pacific through the Luzon Strait during E1 Nifio episodes. Conversely, it was found that the anomalous large-scale atmospheric circulation and weakened western boundary current during E1 Nifio episodes led to the development of the positive SSTA in the southwestern SCS.
基金Supported by the National Basic Research Program of China(973 Program)(No.2013CB430301)the National Natural Science Foundation of China(Nos.41321004,41206022,41406022)the National Special Research Fund for Non-Profit Marine Sector(No.201305032)
文摘Satellite SST(sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST(near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature(~5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00–15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed(<5 m/s) and columnar water vapor >28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.
基金Key National Project for Fundamental Research Project 973 (2004CB418300)Natural Science Foundation of China (40233037)
文摘Based on the precipitation data of Meiyu at 37 stations in the valleys of Yangtze and Huaihe Rivers from 1954 to 2001, the temporal-spatial characteristics of Meiyu precipitation and their relationships with the sea surface temperature in northern Pacific are investigated using such methods as harmonic analysis, empirical orthogonal ftmction (EOF), composite analysis and singular value decomposition (SVD). The results show that the temporal evolution and spatial distribution of Meiyu precipitation are not homogeneous in the Yangtze-Huaihe Rivers basins but with prominent inter-annual and inter-decadal variabilities. The key region between the anomalies of Meiyu precipitation and the monthly sea surface temperature anomalies (SSTA) lies in the west wind drift of North Pacific, which influences the precipitation anomaly of Meiyu precipitation over a key period of time from January to March in the same year. When the SST in the North Pacific west wind drift is warmer (colder) than average during these months, Meiyu precipitation anomalously increases (decreases) in the concurrent year. Results of SVD are consistent with those of composite analysis which pass the significance test of Monte-Carlo at 0.05.