As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and use...As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and user privacy concerns within smart grids.However,existing methods struggle with efficiency and security when processing large-scale data.Balancing efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent challenge.This paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data modalities.The approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user privacy.It also explores the application of Boneh Lynn Shacham(BLS)signatures for user authentication.The proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis.展开更多
The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of user...The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques.展开更多
Applying non-orthogonal multiple access(NOMA)to the mobile edge computing(MEC)network supported by unmanned aerial vehicles(UAVs)can improve spectral efficiency and achieve massive user access on the basis of solving ...Applying non-orthogonal multiple access(NOMA)to the mobile edge computing(MEC)network supported by unmanned aerial vehicles(UAVs)can improve spectral efficiency and achieve massive user access on the basis of solving computing resource constraints and coverage problems.However,the UAV-enabled network has a serious risk of information leakage on account of the openness of wireless channel.This paper considers a UAV-MEC secure network based on NOMA technology,which aims to minimize the UAV energy consumption.To achieve the purpose while meeting the security and users’latency requirements,we formulate an optimization problem that jointly optimizes the UAV trajectory and the allocation of network resources.Given that the original problem is non-convex and multivariate coupled,we proposed an effective algorithm to decouple the nonconvex problem into independent user relation coefficients and subproblems based on successive convex approximation(SCA)and block coordinate descent(BCD).The simulation results showcase the performance of our optimization scheme across various parameter settings and confirm its superiority over other benchmarks with respect to energy consumption.展开更多
In this paper,the application of Non-Orthogonal Multiple Access(NOMA)is investigated in a multiple-input single-output network consisting of multiple legitimate users and a potential eavesdropper.To support secure tra...In this paper,the application of Non-Orthogonal Multiple Access(NOMA)is investigated in a multiple-input single-output network consisting of multiple legitimate users and a potential eavesdropper.To support secure transmissions from legitimate users,two NOMA Secrecy Sum Rate Transmit Beam Forming(NOMA-SSR-TBF)schemes are proposed to maximise the SSR of a Base Station(BS)with sufficient and insufficient transmit power.For BS with sufficient transmit power,an artificial jamming beamforming design scheme is proposed to disrupt the potential eavesdropping without impacting the legitimate transmissions.In addition,for BS with insufficient transmit power,a modified successive interference cancellation decoding sequence is used to reduce the impact of artificial jamming on legitimate transmissions.More specifically,iterative algorithm for the successive convex approximation are provided to jointly optimise the vectors of transmit beamforming and artificial jamming.Experimental results demonstrate that the proposed NOMA-SSR-TBF schemes outperforms the existing works,such as the maximized artificial jamming power scheme,the maximized artificial jamming power scheme with artificial jamming beamforming design and maximized secrecy sum rate scheme without artificial jamming beamforming design.展开更多
The secured access is studied in this paper for the network of the image remote sensing.Each sensor in this network encounters the information security when uploading information of the images wirelessly from the sens...The secured access is studied in this paper for the network of the image remote sensing.Each sensor in this network encounters the information security when uploading information of the images wirelessly from the sensor to the central collection point.In order to enhance the sensing quality for the remote uploading,the passive reflection surface technique is employed.If one eavesdropper that exists nearby this sensor is keeping on accessing the same networks,he may receive the same image from this sensor.Our goal in this paper is to improve the SNR of legitimate collection unit while cut down the SNR of the eavesdropper as much as possible by adaptively adjust the uploading power from this sensor to enhance the security of the remote sensing images.In order to achieve this goal,the secured energy efficiency performance is theoretically analyzed with respect to the number of the passive reflection elements by calculating the instantaneous performance over the channel fading coefficients.Based on this theoretical result,the secured access is formulated as a mathematical optimization problem by adjusting the sensor uploading power as the unknown variables with the objective of the energy efficiency maximization while satisfying any required maximum data rate of the eavesdropper sensor.Finally,the analytical expression is theoretically derived for the optimum uploading power.Numerical simulations verify the design approach.展开更多
Medical institutions frequently utilize cloud servers for storing digital medical imaging data, aiming to lower both storage expenses and computational expenses. Nevertheless, the reliability of cloud servers as third...Medical institutions frequently utilize cloud servers for storing digital medical imaging data, aiming to lower both storage expenses and computational expenses. Nevertheless, the reliability of cloud servers as third-party providers is not always guaranteed. To safeguard against the exposure and misuse of personal privacy information, and achieve secure and efficient retrieval, a secure medical image retrieval based on a multi-attention mechanism and triplet deep hashing is proposed in this paper (abbreviated as MATDH). Specifically, this method first utilizes the contrast-limited adaptive histogram equalization method applicable to color images to enhance chest X-ray images. Next, a designed multi-attention mechanism focuses on important local features during the feature extraction stage. Moreover, a triplet loss function is utilized to learn discriminative hash codes to construct a compact and efficient triplet deep hashing. Finally, upsampling is used to restore the original resolution of the images during retrieval, thereby enabling more accurate matching. To ensure the security of medical image data, a lightweight image encryption method based on frequency domain encryption is designed to encrypt the chest X-ray images. The findings of the experiment indicate that, in comparison to various advanced image retrieval techniques, the suggested approach improves the precision of feature extraction and retrieval using the COVIDx dataset. Additionally, it offers enhanced protection for the confidentiality of medical images stored in cloud settings and demonstrates strong practicality.展开更多
Continuous-variable quantum secure direct communication(CVQSDC)with Gaussian modulation(GM)demands a considerable quantity of random numbers during the preparation process and encodes them separately on the quadrature...Continuous-variable quantum secure direct communication(CVQSDC)with Gaussian modulation(GM)demands a considerable quantity of random numbers during the preparation process and encodes them separately on the quadrature components of the quantum states.Hence,high-speed random number generators are required to satisfy this demand,which is difficult to implement in practical applications.CVQSDC with discrete modulation(DM),correspondingly,employs a finite number of quantum states to achieve encoding,which can circumvent the shortcomings of the GM scheme.Based on the advantages of DM,the issue of attaining the most optimal secrecy capacity and communication distance remains to be resolved.Here,we propose a CVQSDC protocol based on N-symbol amplitude phase shift keying(N-APSK),which exploits the Boltzmann-Maxwell distribution assisted probability shaping technique.In comparison with the uniform distribution,according to 32-APSK CVQSDC,the proposed scheme extends the communication distance by about 38%,while obtaining a higher secrecy capacity at the same communication distance.Furthermore,increasing the value of N will concurrently increase the quantity of rings in the constellation,thereby facilitating enhancements of communication distance.This work incorporates the modulation approaches prevalently employed in classical communication into the realm of quantum communication,attaining gratifying advancements in communication distance and secrecy capacity,and concurrently facilitating the integrated development of quantum communication and classical communication.展开更多
Integrating Artificial Intelligence of Things(AIoT)in healthcare offers transformative potential for real-time diagnostics and collaborative learning but presents critical challenges,including privacy preservation,com...Integrating Artificial Intelligence of Things(AIoT)in healthcare offers transformative potential for real-time diagnostics and collaborative learning but presents critical challenges,including privacy preservation,computational efficiency,and regulatory compliance.Traditional approaches,such as differential privacy,homomorphic encryption,and secure multi-party computation,often fail to balance performance and privacy,rendering them unsuitable for resource-constrained healthcare AIoT environments.This paper introduces LMSA(Lightweight Multi-Key Secure Aggregation),a novel framework designed to address these challenges and enable efficient,secure federated learning across distributed healthcare institutions.LMSA incorporates three key innovations:(1)a lightweight multikey management system leveraging Diffie-Hellman key exchange and SHA3-256 hashing,achieving O(n)complexity with AES(Advanced Encryption Standard)-256-level security;(2)a privacy-preserving aggregation protocol employing hardware-accelerated AES-CTR(CounTeR)encryption andmodular arithmetic for securemodel weight combination;and(3)a resource-optimized implementation utilizing AES-NI(New Instructions)instructions and efficient memory management for real-time operations on constrained devices.Experimental evaluations using the National Institutes of Health(NIH)Chest X-ray dataset demonstrate LMSA’s ability to train multi-label thoracic disease prediction models with Vision Transformer(ViT),ResNet-50,and MobileNet architectures across distributed healthcare institutions.Memory usage analysis confirmed minimal overhead,with ViT(327.30 MB),ResNet-50(89.87 MB),and MobileNet(8.63 MB)maintaining stable encryption times across communication rounds.LMSA ensures robust security through hardware acceleration,enabling real-time diagnostics without compromising patient confidentiality or regulatory compliance.Future research aims to optimize LMSA for ultra-low-power devices and validate its scalability in heterogeneous,real-world environments.LMSA represents a foundational advancement for privacy-conscious healthcare AI applications,bridging the gap between privacy and performance.展开更多
The security of information transmission and processing due to unknown vulnerabilities and backdoors in cyberspace is becoming increasingly problematic.However,there is a lack of effective theory to mathematically dem...The security of information transmission and processing due to unknown vulnerabilities and backdoors in cyberspace is becoming increasingly problematic.However,there is a lack of effective theory to mathematically demonstrate the security of information transmission and processing under nonrandom noise(or vulnerability backdoor attack)conditions in cyberspace.This paper first proposes a security model for cyberspace information transmission and processing channels based on error correction coding theory.First,we analyze the fault tolerance and non-randomness problem of Dynamic Heterogeneous Redundancy(DHR)structured information transmission and processing channel under the condition of non-random noise or attacks.Secondly,we use a mathematical statistical method to demonstrate that for non-random noise(or attacks)on discrete memory channels,there exists a DHR-structured channel and coding scheme that enables the average system error probability to be arbitrarily small.Finally,to construct suitable coding and heterogeneous channels,we take Turbo code as an example and simulate the effects of different heterogeneity,redundancy,output vector length,verdict algorithm and dynamism on the system,which is an important guidance for theory and engineering practice.展开更多
The Internet of Things (IoT) and edge-assisted networking infrastructures are capable of bringing data processing and accessibility services locally at the respective edge rather than at a centralized module. These in...The Internet of Things (IoT) and edge-assisted networking infrastructures are capable of bringing data processing and accessibility services locally at the respective edge rather than at a centralized module. These infrastructures are very effective in providing a fast response to the respective queries of the requesting modules, but their distributed nature has introduced other problems such as security and privacy. To address these problems, various security-assisted communication mechanisms have been developed to safeguard every active module, i.e., devices and edges, from every possible vulnerability in the IoT. However, these methodologies have neglected one of the critical issues, which is the prediction of fraudulent devices, i.e., adversaries, preferably as early as possible in the IoT. In this paper, a hybrid communication mechanism is presented where the Hidden Markov Model (HMM) predicts the legitimacy of the requesting device (both source and destination), and the Advanced Encryption Standard (AES) safeguards the reliability of the transmitted data over a shared communication medium, preferably through a secret shared key, i.e., , and timestamp information. A device becomes trusted if it has passed both evaluation levels, i.e., HMM and message decryption, within a stipulated time interval. The proposed hybrid, along with existing state-of-the-art approaches, has been simulated in the realistic environment of the IoT to verify the security measures. These evaluations were carried out in the presence of intruders capable of launching various attacks simultaneously, such as man-in-the-middle, device impersonations, and masquerading attacks. Moreover, the proposed approach has been proven to be more effective than existing state-of-the-art approaches due to its exceptional performance in communication, processing, and storage overheads, i.e., 13%, 19%, and 16%, respectively. Finally, the proposed hybrid approach is pruned against well-known security attacks in the IoT.展开更多
This article focuses on the current computer monitoring and control as the research direction,studying the application strategies of artificial intelligence and big data technology in this field.It includes an introdu...This article focuses on the current computer monitoring and control as the research direction,studying the application strategies of artificial intelligence and big data technology in this field.It includes an introduction to artificial intelligence and big data technology,the application strategies of artificial intelligence and big data technology in computer hardware,software,and network monitoring,as well as the application strategies of artificial intelligence and big data technology in computer process,access,and network control.This analysis aims to serve as a reference for the application of artificial intelligence and big data technology in computer monitoring and control,ultimately enhancing the security of computer systems.展开更多
Physical layer security methods based on joint relay and jammer selection(JRJS)have been widely investigated in the study of secure wireless communications.Different from current works on JRJS schemes,which assumed th...Physical layer security methods based on joint relay and jammer selection(JRJS)have been widely investigated in the study of secure wireless communications.Different from current works on JRJS schemes,which assumed that the global channel state information(CSI)of the eavesdroppers(Eves)was known beforehand,then the optimal relaying and jamming relays were determined.More importantly,the time complexity of selecting optimal jamming relay is O(N^(2)),where N is the maximum number of relays/Eves.In this paper,for the scenario where the source wants to exchange the message with the destination,via relaying scheme due to longer communication distance and limited transmission power,in the presence of multiple Eves,with the assumption of Eves'perfect CSI and average CSI,we propose two kinds of JRJS methods.In particular,the time complexity of finding the optimal jammer can be reduced to O(N).Furthermore,we present a novel JRJS scheme for no CSI of Eves by minimizing the difference between expected signal and interfering signal at the destination.Finally,simulations show that the designed methods are more effective than JRJS and other existing strategies in terms of security performance.展开更多
Improving the quality assurance (QA) processes and acquiring accreditation are top priorities for academic programs. The learning outcomes (LOs)assessment and continuous quality improvement represent core components o...Improving the quality assurance (QA) processes and acquiring accreditation are top priorities for academic programs. The learning outcomes (LOs)assessment and continuous quality improvement represent core components ofthe quality assurance system (QAS). Current assessment methods suffer deficiencies related to accuracy and reliability, and they lack well-organized processes forcontinuous improvement planning. Moreover, the absence of automation, andintegration in QA processes forms a major obstacle towards developing efficientquality system. There is a pressing need to adopt security protocols that providerequired security services to safeguard the valuable information processed byQAS as well. This research proposes an effective methodology for LOs assessment and continuous improvement processes. The proposed approach ensuresmore accurate and reliable LOs assessment results and provides systematic wayfor utilizing those results in the continuous quality improvement. This systematicand well-specified QA processes were then utilized to model and implement automated and secure QAS that efficiently performs quality-related processes. Theproposed system adopts two security protocols that provide confidentiality, integrity, and authentication for quality data and reports. The security protocols avoidthe source repudiation, which is important in the quality reporting system. This isachieved through implementing powerful cryptographic algorithms. The QASenables efficient data collection and processing required for analysis and interpretation. It also prepares for the development of datasets that can be used in futureartificial intelligence (AI) researches to support decision making and improve thequality of academic programs. The proposed approach is implemented in a successful real case study for a computer science program. The current study servesscientific programs struggling to achieve academic accreditation, and gives rise tofully automating and integrating the QA processes and adopting modern AI andsecurity technologies to develop effective QAS.展开更多
Border Gateway Protocol(BGP)is a standard inter-domain routing protocol for the Internet that conveys network layer reachability information and establishes routes to different destinations.The BGP protocol exhibits s...Border Gateway Protocol(BGP)is a standard inter-domain routing protocol for the Internet that conveys network layer reachability information and establishes routes to different destinations.The BGP protocol exhibits security design defects,such as an unconditional trust mechanism and the default acceptance of BGP route announcements from peers by BGP neighboring nodes,easily triggering prefix hijacking,path forgery,route leakage,and other BGP security threats.Meanwhile,the traditional BGP security mechanism,relying on a public key infrastructure,faces issues like a single point of failure and a single point of trust.The decentralization,anti-tampering,and traceability advantages of blockchain offer new solution ideas for constructing secure and trusted inter-domain routing mechanisms.In this paper,we summarize the characteristics of BGP protocol in detail,sort out the BGP security threats and their causes.Additionally,we analyze the shortcomings of the traditional BGP security mechanism and comprehensively evaluate existing blockchain-based solutions to address the above problems and validate the reliability and effectiveness of blockchain-based BGP security methods in mitigating BGP security threats.Finally,we discuss the challenges posed by BGP security problems and outline prospects for future research.展开更多
In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose...In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose a Hadoop based big data secure storage scheme.Firstly,in order to disperse the NameNode service from a single server to multiple servers,we combine HDFS federation and HDFS high-availability mechanisms,and use the Zookeeper distributed coordination mechanism to coordinate each node to achieve dual-channel storage.Then,we improve the ECC encryption algorithm for the encryption of ordinary data,and adopt a homomorphic encryption algorithm to encrypt data that needs to be calculated.To accelerate the encryption,we adopt the dualthread encryption mode.Finally,the HDFS control module is designed to combine the encryption algorithm with the storage model.Experimental results show that the proposed solution solves the problem of a single point of failure of metadata,performs well in terms of metadata reliability,and can realize the fault tolerance of the server.The improved encryption algorithm integrates the dual-channel storage mode,and the encryption storage efficiency improves by 27.6% on average.展开更多
Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,esp...Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,especially for short-distance optical interconnects,light-carrying OAM has proved its great potential to improve transmission capacity and spectral efficiency in the space-division multiplexing system due to its orthogonality,security,and compatibility with other techniques.Meanwhile,100-m freespace optical interconnects become an alternative solution for the“last mile”problem and provide interbuilding communication.We experimentally demonstrate a 260-m secure optical interconnect using OAM multiplexing and 16-ary quadrature amplitude modulation(16-QAM)signals.We study the beam wandering,power fluctuation,channel cross talk,bit-error-rate performance,and link security.Additionally,we also investigate the link performance for 1-to-9 multicasting at the range of 260 m.Considering that the power distribution may be affected by atmospheric turbulence,we introduce an offline feedback process to make it flexibly controllable.展开更多
Global food security is a pressing issue that affects the stability and well-being of communities worldwide.While existing Internet of Things(IoT)enabled plant monitoring systems have made significant strides in agric...Global food security is a pressing issue that affects the stability and well-being of communities worldwide.While existing Internet of Things(IoT)enabled plant monitoring systems have made significant strides in agricultural monitoring,they often face limitations such as high power consumption,restricted mobility,complex deployment requirements,and inadequate security measures for data access.This paper introduces an enhanced IoT application for agricultural monitoring systems that address these critical shortcomings.Our system strategically combines power efficiency,portability,and secure access capabilities,assisting farmers in monitoring and tracking crop environmental conditions.The proposed system includes a remote camera that captures images of surrounding plants and a sensor module that regularly monitors various environmental factors,including temperature,humidity,and soil moisture.We implement power management strategies to minimize energy consumption compared to existing solutions.Unlike conventional systems,our implementation utilizes the Amazon Web Services(AWS)cloud platform for reliable data storage and processing while incorporating comprehensive security measures,including Two-Factor Authentication(2FA)and JSON Web Tokens(JWT),features often overlooked in current agricultural IoT solutions.Users can access this secure monitoring system via a developed Android application,providing convenient mobile access to the gathered plant data.We validate our system’s advantages by implementing it with two potted garlic plants on Okayama University’s rooftop.Our evaluation demonstrates high sensor reliabil-ity,with strong correlations between sensor readings and reference data,achieving determination coefficients(R2)of 0.979 for temperature and 0.750 for humidity measurements.The implemented power management strategies extend battery life to 10 days on a single charge,significantly outperforming existing systems that typically require daily recharging.Furthermore,our dual-layer security implementation utilizing 2FA and JWT successfully protects sensitive agricultural data from unauthorized access.展开更多
In this paper,we propose a novel secure image communication system that integrates quantum key distribution and hyperchaotic encryption techniques to ensure enhanced security for both key distribution and plaintext en...In this paper,we propose a novel secure image communication system that integrates quantum key distribution and hyperchaotic encryption techniques to ensure enhanced security for both key distribution and plaintext encryption.Specifically,we leverage the B92 Quantum Key Distribution(QKD)protocol to secure the distribution of encryption keys,which are further processed through Galois Field(GF(28))operations for increased security.The encrypted plaintext is secured using a newly developed Hyper 3D Logistic Map(H3LM),a chaotic system that generates complex and unpredictable sequences,thereby ensuring strong confusion and diffusion in the encryption process.This hybrid approach offers a robust defense against quantum and classical cryptographic attacks,combining the advantages of quantum-level key distribution with the unpredictability of hyperchaos-based encryption.The proposed method demonstrates high sensitivity to key changes and resilience to noise,compression,and cropping attacks,ensuring both secure key transmission and robust image encryption.展开更多
Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.How...Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.However,the limitations of manual sweeps have become increasingly evident with the implementation of large-scale accelerators.By leveraging advancements in machine vision technology,the automatic identification of stranded personnel in controlled areas through camera imagery presents a viable solution for efficient search and security.Given the criticality of personal safety for stranded individuals,search and security processes must be sufficiently reliable.To ensure comprehensive coverage,180°camera groups were strategically positioned on both sides of the accelerator tunnel to eliminate blind spots within the monitoring range.The YOLOV8 network model was modified to enable the detection of small targets,such as hands and feet,as well as larger targets formed by individuals near the cameras.Furthermore,the system incorporates a pedestrian recognition model that detects human body parts,and an information fusion strategy is used to integrate the detected head,hands,and feet with the identified pedestrians as a cohesive unit.This strategy enhanced the capability of the model to identify pedestrians obstructed by equipment,resulting in a notable improvement in the recall rate.Specifically,recall rates of 0.915 and 0.82were obtained for Datasets 1 and 2,respectively.Although there was a slight decrease in accuracy,it aligned with the intended purpose of the search-and-secure software design.Experimental tests conducted within an accelerator tunnel demonstrated the effectiveness of this approach in achieving reliable recognition outcomes.展开更多
基金supported by the National Key R&D Program of China(No.2023YFB2703700)the National Natural Science Foundation of China(Nos.U21A20465,62302457,62402444,62172292)+4 种基金the Fundamental Research Funds of Zhejiang Sci-Tech University(Nos.23222092-Y,22222266-Y)the Program for Leading Innovative Research Team of Zhejiang Province(No.2023R01001)the Zhejiang Provincial Natural Science Foundation of China(Nos.LQ24F020008,LQ24F020012)the Foundation of State Key Laboratory of Public Big Data(No.[2022]417)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2023C01119).
文摘As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and user privacy concerns within smart grids.However,existing methods struggle with efficiency and security when processing large-scale data.Balancing efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent challenge.This paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data modalities.The approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user privacy.It also explores the application of Boneh Lynn Shacham(BLS)signatures for user authentication.The proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis.
基金funding from King Saud University through Researchers Supporting Project number(RSP2024R387),King Saud University,Riyadh,Saudi Arabia.
文摘The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques.
基金supported in part by the National Natural Science Foundation of China under Grant 61971474in part by the National Natural Science Foundation of China under Grant 62301594+2 种基金in part by the Special Funds of the National Natural Science Foundation of China under Grant 62341112in part by the Beijing Nova Program under Grant Z201100006820121in part by the Beijing Municipal Science and Technology Project under Grant Z181100003218015.
文摘Applying non-orthogonal multiple access(NOMA)to the mobile edge computing(MEC)network supported by unmanned aerial vehicles(UAVs)can improve spectral efficiency and achieve massive user access on the basis of solving computing resource constraints and coverage problems.However,the UAV-enabled network has a serious risk of information leakage on account of the openness of wireless channel.This paper considers a UAV-MEC secure network based on NOMA technology,which aims to minimize the UAV energy consumption.To achieve the purpose while meeting the security and users’latency requirements,we formulate an optimization problem that jointly optimizes the UAV trajectory and the allocation of network resources.Given that the original problem is non-convex and multivariate coupled,we proposed an effective algorithm to decouple the nonconvex problem into independent user relation coefficients and subproblems based on successive convex approximation(SCA)and block coordinate descent(BCD).The simulation results showcase the performance of our optimization scheme across various parameter settings and confirm its superiority over other benchmarks with respect to energy consumption.
基金supported in part by the Natural Science Foundation of Fujian Province under Grant 2022J01169the Local Science and Technology Development of Fujian Province under Grant 2021L3010+3 种基金the Key Project of Science and Technology Innovation of Fujian Province under Grant 2021G02006the National Natural Science Foundation of China under Grants 61971360 and 62271420the National Natural Science Foundation of China under Grant 62071247the Urban Carbon Neutral Science and Technology Innovation Fund Project of Beijing University of Technology ($040000514122607$)。
文摘In this paper,the application of Non-Orthogonal Multiple Access(NOMA)is investigated in a multiple-input single-output network consisting of multiple legitimate users and a potential eavesdropper.To support secure transmissions from legitimate users,two NOMA Secrecy Sum Rate Transmit Beam Forming(NOMA-SSR-TBF)schemes are proposed to maximise the SSR of a Base Station(BS)with sufficient and insufficient transmit power.For BS with sufficient transmit power,an artificial jamming beamforming design scheme is proposed to disrupt the potential eavesdropping without impacting the legitimate transmissions.In addition,for BS with insufficient transmit power,a modified successive interference cancellation decoding sequence is used to reduce the impact of artificial jamming on legitimate transmissions.More specifically,iterative algorithm for the successive convex approximation are provided to jointly optimise the vectors of transmit beamforming and artificial jamming.Experimental results demonstrate that the proposed NOMA-SSR-TBF schemes outperforms the existing works,such as the maximized artificial jamming power scheme,the maximized artificial jamming power scheme with artificial jamming beamforming design and maximized secrecy sum rate scheme without artificial jamming beamforming design.
基金supported in part by Jiangsu Province High Level“333”Program (0401206044)National Natural Science Foundation of China (61801243,62072255)+4 种基金Program for Scientific Research Foundation for Talented Scholars of Jinling Institute of Technology (JIT-B-202031)University Incubator Foundation of Jinling Institute of Technology (JIT-FHXM-202110)Open Project of Fujian Provincial Key Lab.of Network Security and Cryptology (NSCL-KF2021-02)Open Foundation of National Railway Intelligence Transportation System Engineering Tech.Research Center (RITS2021KF02)China Postdoctoral Science Foundation (2019M651914)。
文摘The secured access is studied in this paper for the network of the image remote sensing.Each sensor in this network encounters the information security when uploading information of the images wirelessly from the sensor to the central collection point.In order to enhance the sensing quality for the remote uploading,the passive reflection surface technique is employed.If one eavesdropper that exists nearby this sensor is keeping on accessing the same networks,he may receive the same image from this sensor.Our goal in this paper is to improve the SNR of legitimate collection unit while cut down the SNR of the eavesdropper as much as possible by adaptively adjust the uploading power from this sensor to enhance the security of the remote sensing images.In order to achieve this goal,the secured energy efficiency performance is theoretically analyzed with respect to the number of the passive reflection elements by calculating the instantaneous performance over the channel fading coefficients.Based on this theoretical result,the secured access is formulated as a mathematical optimization problem by adjusting the sensor uploading power as the unknown variables with the objective of the energy efficiency maximization while satisfying any required maximum data rate of the eavesdropper sensor.Finally,the analytical expression is theoretically derived for the optimum uploading power.Numerical simulations verify the design approach.
基金supported by the NationalNatural Science Foundation of China(No.61862041).
文摘Medical institutions frequently utilize cloud servers for storing digital medical imaging data, aiming to lower both storage expenses and computational expenses. Nevertheless, the reliability of cloud servers as third-party providers is not always guaranteed. To safeguard against the exposure and misuse of personal privacy information, and achieve secure and efficient retrieval, a secure medical image retrieval based on a multi-attention mechanism and triplet deep hashing is proposed in this paper (abbreviated as MATDH). Specifically, this method first utilizes the contrast-limited adaptive histogram equalization method applicable to color images to enhance chest X-ray images. Next, a designed multi-attention mechanism focuses on important local features during the feature extraction stage. Moreover, a triplet loss function is utilized to learn discriminative hash codes to construct a compact and efficient triplet deep hashing. Finally, upsampling is used to restore the original resolution of the images during retrieval, thereby enabling more accurate matching. To ensure the security of medical image data, a lightweight image encryption method based on frequency domain encryption is designed to encrypt the chest X-ray images. The findings of the experiment indicate that, in comparison to various advanced image retrieval techniques, the suggested approach improves the precision of feature extraction and retrieval using the COVIDx dataset. Additionally, it offers enhanced protection for the confidentiality of medical images stored in cloud settings and demonstrates strong practicality.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62071381 and 62301430)Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.23JSY014)+1 种基金Scientific Research Plan Project of Shaanxi Education Department Natural Science Special Project(Grant No.23JK0680)Young Talent Fund of Xi’an Association for Science and Technology(Grant No.959202313011)。
文摘Continuous-variable quantum secure direct communication(CVQSDC)with Gaussian modulation(GM)demands a considerable quantity of random numbers during the preparation process and encodes them separately on the quadrature components of the quantum states.Hence,high-speed random number generators are required to satisfy this demand,which is difficult to implement in practical applications.CVQSDC with discrete modulation(DM),correspondingly,employs a finite number of quantum states to achieve encoding,which can circumvent the shortcomings of the GM scheme.Based on the advantages of DM,the issue of attaining the most optimal secrecy capacity and communication distance remains to be resolved.Here,we propose a CVQSDC protocol based on N-symbol amplitude phase shift keying(N-APSK),which exploits the Boltzmann-Maxwell distribution assisted probability shaping technique.In comparison with the uniform distribution,according to 32-APSK CVQSDC,the proposed scheme extends the communication distance by about 38%,while obtaining a higher secrecy capacity at the same communication distance.Furthermore,increasing the value of N will concurrently increase the quantity of rings in the constellation,thereby facilitating enhancements of communication distance.This work incorporates the modulation approaches prevalently employed in classical communication into the realm of quantum communication,attaining gratifying advancements in communication distance and secrecy capacity,and concurrently facilitating the integrated development of quantum communication and classical communication.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2022R1C1C2012463).
文摘Integrating Artificial Intelligence of Things(AIoT)in healthcare offers transformative potential for real-time diagnostics and collaborative learning but presents critical challenges,including privacy preservation,computational efficiency,and regulatory compliance.Traditional approaches,such as differential privacy,homomorphic encryption,and secure multi-party computation,often fail to balance performance and privacy,rendering them unsuitable for resource-constrained healthcare AIoT environments.This paper introduces LMSA(Lightweight Multi-Key Secure Aggregation),a novel framework designed to address these challenges and enable efficient,secure federated learning across distributed healthcare institutions.LMSA incorporates three key innovations:(1)a lightweight multikey management system leveraging Diffie-Hellman key exchange and SHA3-256 hashing,achieving O(n)complexity with AES(Advanced Encryption Standard)-256-level security;(2)a privacy-preserving aggregation protocol employing hardware-accelerated AES-CTR(CounTeR)encryption andmodular arithmetic for securemodel weight combination;and(3)a resource-optimized implementation utilizing AES-NI(New Instructions)instructions and efficient memory management for real-time operations on constrained devices.Experimental evaluations using the National Institutes of Health(NIH)Chest X-ray dataset demonstrate LMSA’s ability to train multi-label thoracic disease prediction models with Vision Transformer(ViT),ResNet-50,and MobileNet architectures across distributed healthcare institutions.Memory usage analysis confirmed minimal overhead,with ViT(327.30 MB),ResNet-50(89.87 MB),and MobileNet(8.63 MB)maintaining stable encryption times across communication rounds.LMSA ensures robust security through hardware acceleration,enabling real-time diagnostics without compromising patient confidentiality or regulatory compliance.Future research aims to optimize LMSA for ultra-low-power devices and validate its scalability in heterogeneous,real-world environments.LMSA represents a foundational advancement for privacy-conscious healthcare AI applications,bridging the gap between privacy and performance.
基金supported by National Key R&D Program of China for Young Scientists:Cyberspace Endogenous Security Mechanisms and Evaluation Methods(No.2022YFB3102800).
文摘The security of information transmission and processing due to unknown vulnerabilities and backdoors in cyberspace is becoming increasingly problematic.However,there is a lack of effective theory to mathematically demonstrate the security of information transmission and processing under nonrandom noise(or vulnerability backdoor attack)conditions in cyberspace.This paper first proposes a security model for cyberspace information transmission and processing channels based on error correction coding theory.First,we analyze the fault tolerance and non-randomness problem of Dynamic Heterogeneous Redundancy(DHR)structured information transmission and processing channel under the condition of non-random noise or attacks.Secondly,we use a mathematical statistical method to demonstrate that for non-random noise(or attacks)on discrete memory channels,there exists a DHR-structured channel and coding scheme that enables the average system error probability to be arbitrarily small.Finally,to construct suitable coding and heterogeneous channels,we take Turbo code as an example and simulate the effects of different heterogeneity,redundancy,output vector length,verdict algorithm and dynamism on the system,which is an important guidance for theory and engineering practice.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University via Grant No.(QU-APC-2025).
文摘The Internet of Things (IoT) and edge-assisted networking infrastructures are capable of bringing data processing and accessibility services locally at the respective edge rather than at a centralized module. These infrastructures are very effective in providing a fast response to the respective queries of the requesting modules, but their distributed nature has introduced other problems such as security and privacy. To address these problems, various security-assisted communication mechanisms have been developed to safeguard every active module, i.e., devices and edges, from every possible vulnerability in the IoT. However, these methodologies have neglected one of the critical issues, which is the prediction of fraudulent devices, i.e., adversaries, preferably as early as possible in the IoT. In this paper, a hybrid communication mechanism is presented where the Hidden Markov Model (HMM) predicts the legitimacy of the requesting device (both source and destination), and the Advanced Encryption Standard (AES) safeguards the reliability of the transmitted data over a shared communication medium, preferably through a secret shared key, i.e., , and timestamp information. A device becomes trusted if it has passed both evaluation levels, i.e., HMM and message decryption, within a stipulated time interval. The proposed hybrid, along with existing state-of-the-art approaches, has been simulated in the realistic environment of the IoT to verify the security measures. These evaluations were carried out in the presence of intruders capable of launching various attacks simultaneously, such as man-in-the-middle, device impersonations, and masquerading attacks. Moreover, the proposed approach has been proven to be more effective than existing state-of-the-art approaches due to its exceptional performance in communication, processing, and storage overheads, i.e., 13%, 19%, and 16%, respectively. Finally, the proposed hybrid approach is pruned against well-known security attacks in the IoT.
文摘This article focuses on the current computer monitoring and control as the research direction,studying the application strategies of artificial intelligence and big data technology in this field.It includes an introduction to artificial intelligence and big data technology,the application strategies of artificial intelligence and big data technology in computer hardware,software,and network monitoring,as well as the application strategies of artificial intelligence and big data technology in computer process,access,and network control.This analysis aims to serve as a reference for the application of artificial intelligence and big data technology in computer monitoring and control,ultimately enhancing the security of computer systems.
基金supported by the National Natural Science Foundation of China with Grants 62301076 and 62321001。
文摘Physical layer security methods based on joint relay and jammer selection(JRJS)have been widely investigated in the study of secure wireless communications.Different from current works on JRJS schemes,which assumed that the global channel state information(CSI)of the eavesdroppers(Eves)was known beforehand,then the optimal relaying and jamming relays were determined.More importantly,the time complexity of selecting optimal jamming relay is O(N^(2)),where N is the maximum number of relays/Eves.In this paper,for the scenario where the source wants to exchange the message with the destination,via relaying scheme due to longer communication distance and limited transmission power,in the presence of multiple Eves,with the assumption of Eves'perfect CSI and average CSI,we propose two kinds of JRJS methods.In particular,the time complexity of finding the optimal jammer can be reduced to O(N).Furthermore,we present a novel JRJS scheme for no CSI of Eves by minimizing the difference between expected signal and interfering signal at the destination.Finally,simulations show that the designed methods are more effective than JRJS and other existing strategies in terms of security performance.
基金Author extends his appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding and supporting this work through Graduate Student Research Support Program.
文摘Improving the quality assurance (QA) processes and acquiring accreditation are top priorities for academic programs. The learning outcomes (LOs)assessment and continuous quality improvement represent core components ofthe quality assurance system (QAS). Current assessment methods suffer deficiencies related to accuracy and reliability, and they lack well-organized processes forcontinuous improvement planning. Moreover, the absence of automation, andintegration in QA processes forms a major obstacle towards developing efficientquality system. There is a pressing need to adopt security protocols that providerequired security services to safeguard the valuable information processed byQAS as well. This research proposes an effective methodology for LOs assessment and continuous improvement processes. The proposed approach ensuresmore accurate and reliable LOs assessment results and provides systematic wayfor utilizing those results in the continuous quality improvement. This systematicand well-specified QA processes were then utilized to model and implement automated and secure QAS that efficiently performs quality-related processes. Theproposed system adopts two security protocols that provide confidentiality, integrity, and authentication for quality data and reports. The security protocols avoidthe source repudiation, which is important in the quality reporting system. This isachieved through implementing powerful cryptographic algorithms. The QASenables efficient data collection and processing required for analysis and interpretation. It also prepares for the development of datasets that can be used in futureartificial intelligence (AI) researches to support decision making and improve thequality of academic programs. The proposed approach is implemented in a successful real case study for a computer science program. The current study servesscientific programs struggling to achieve academic accreditation, and gives rise tofully automating and integrating the QA processes and adopting modern AI andsecurity technologies to develop effective QAS.
基金the National Natural Science Foundation of China,GrantNumbers(62272007,62001007)the Natural Science Foundation of Beijing,GrantNumbers(4234083,4212018)The authors also acknowledge the support from King Khalid University for funding this research through the Large Group Project under Grant Number RGP.2/373/45.
文摘Border Gateway Protocol(BGP)is a standard inter-domain routing protocol for the Internet that conveys network layer reachability information and establishes routes to different destinations.The BGP protocol exhibits security design defects,such as an unconditional trust mechanism and the default acceptance of BGP route announcements from peers by BGP neighboring nodes,easily triggering prefix hijacking,path forgery,route leakage,and other BGP security threats.Meanwhile,the traditional BGP security mechanism,relying on a public key infrastructure,faces issues like a single point of failure and a single point of trust.The decentralization,anti-tampering,and traceability advantages of blockchain offer new solution ideas for constructing secure and trusted inter-domain routing mechanisms.In this paper,we summarize the characteristics of BGP protocol in detail,sort out the BGP security threats and their causes.Additionally,we analyze the shortcomings of the traditional BGP security mechanism and comprehensively evaluate existing blockchain-based solutions to address the above problems and validate the reliability and effectiveness of blockchain-based BGP security methods in mitigating BGP security threats.Finally,we discuss the challenges posed by BGP security problems and outline prospects for future research.
文摘In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose a Hadoop based big data secure storage scheme.Firstly,in order to disperse the NameNode service from a single server to multiple servers,we combine HDFS federation and HDFS high-availability mechanisms,and use the Zookeeper distributed coordination mechanism to coordinate each node to achieve dual-channel storage.Then,we improve the ECC encryption algorithm for the encryption of ordinary data,and adopt a homomorphic encryption algorithm to encrypt data that needs to be calculated.To accelerate the encryption,we adopt the dualthread encryption mode.Finally,the HDFS control module is designed to combine the encryption algorithm with the storage model.Experimental results show that the proposed solution solves the problem of a single point of failure of metadata,performs well in terms of metadata reliability,and can realize the fault tolerance of the server.The improved encryption algorithm integrates the dual-channel storage mode,and the encryption storage efficiency improves by 27.6% on average.
基金supported by the National Natural Science Foundation of China (Grant Nos.62125503,62261160388,and 62101198)the Natural Science Foundation of Hubei Province of China (Grant Nos.2021CFB011 and 2023AFA028)+2 种基金the Key R&D Program of Hubei Province of China (Grant Nos.2020BAB001 and 2021BAA024)Shenzhen Science and Technology Program (Grant No.JCYJ20200109114018750)the Innovation Project of Optics Valley Laboratory (Grant Nos.OVL2021BG004 and OVL2023ZD004).
文摘Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,especially for short-distance optical interconnects,light-carrying OAM has proved its great potential to improve transmission capacity and spectral efficiency in the space-division multiplexing system due to its orthogonality,security,and compatibility with other techniques.Meanwhile,100-m freespace optical interconnects become an alternative solution for the“last mile”problem and provide interbuilding communication.We experimentally demonstrate a 260-m secure optical interconnect using OAM multiplexing and 16-ary quadrature amplitude modulation(16-QAM)signals.We study the beam wandering,power fluctuation,channel cross talk,bit-error-rate performance,and link security.Additionally,we also investigate the link performance for 1-to-9 multicasting at the range of 260 m.Considering that the power distribution may be affected by atmospheric turbulence,we introduce an offline feedback process to make it flexibly controllable.
基金supported by the budget of GIC project at Okayama University.
文摘Global food security is a pressing issue that affects the stability and well-being of communities worldwide.While existing Internet of Things(IoT)enabled plant monitoring systems have made significant strides in agricultural monitoring,they often face limitations such as high power consumption,restricted mobility,complex deployment requirements,and inadequate security measures for data access.This paper introduces an enhanced IoT application for agricultural monitoring systems that address these critical shortcomings.Our system strategically combines power efficiency,portability,and secure access capabilities,assisting farmers in monitoring and tracking crop environmental conditions.The proposed system includes a remote camera that captures images of surrounding plants and a sensor module that regularly monitors various environmental factors,including temperature,humidity,and soil moisture.We implement power management strategies to minimize energy consumption compared to existing solutions.Unlike conventional systems,our implementation utilizes the Amazon Web Services(AWS)cloud platform for reliable data storage and processing while incorporating comprehensive security measures,including Two-Factor Authentication(2FA)and JSON Web Tokens(JWT),features often overlooked in current agricultural IoT solutions.Users can access this secure monitoring system via a developed Android application,providing convenient mobile access to the gathered plant data.We validate our system’s advantages by implementing it with two potted garlic plants on Okayama University’s rooftop.Our evaluation demonstrates high sensor reliabil-ity,with strong correlations between sensor readings and reference data,achieving determination coefficients(R2)of 0.979 for temperature and 0.750 for humidity measurements.The implemented power management strategies extend battery life to 10 days on a single charge,significantly outperforming existing systems that typically require daily recharging.Furthermore,our dual-layer security implementation utilizing 2FA and JWT successfully protects sensitive agricultural data from unauthorized access.
文摘In this paper,we propose a novel secure image communication system that integrates quantum key distribution and hyperchaotic encryption techniques to ensure enhanced security for both key distribution and plaintext encryption.Specifically,we leverage the B92 Quantum Key Distribution(QKD)protocol to secure the distribution of encryption keys,which are further processed through Galois Field(GF(28))operations for increased security.The encrypted plaintext is secured using a newly developed Hyper 3D Logistic Map(H3LM),a chaotic system that generates complex and unpredictable sequences,thereby ensuring strong confusion and diffusion in the encryption process.This hybrid approach offers a robust defense against quantum and classical cryptographic attacks,combining the advantages of quantum-level key distribution with the unpredictability of hyperchaos-based encryption.The proposed method demonstrates high sensitivity to key changes and resilience to noise,compression,and cropping attacks,ensuring both secure key transmission and robust image encryption.
文摘Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.However,the limitations of manual sweeps have become increasingly evident with the implementation of large-scale accelerators.By leveraging advancements in machine vision technology,the automatic identification of stranded personnel in controlled areas through camera imagery presents a viable solution for efficient search and security.Given the criticality of personal safety for stranded individuals,search and security processes must be sufficiently reliable.To ensure comprehensive coverage,180°camera groups were strategically positioned on both sides of the accelerator tunnel to eliminate blind spots within the monitoring range.The YOLOV8 network model was modified to enable the detection of small targets,such as hands and feet,as well as larger targets formed by individuals near the cameras.Furthermore,the system incorporates a pedestrian recognition model that detects human body parts,and an information fusion strategy is used to integrate the detected head,hands,and feet with the identified pedestrians as a cohesive unit.This strategy enhanced the capability of the model to identify pedestrians obstructed by equipment,resulting in a notable improvement in the recall rate.Specifically,recall rates of 0.915 and 0.82were obtained for Datasets 1 and 2,respectively.Although there was a slight decrease in accuracy,it aligned with the intended purpose of the search-and-secure software design.Experimental tests conducted within an accelerator tunnel demonstrated the effectiveness of this approach in achieving reliable recognition outcomes.