In recent years,photocatalytic N_(2) reduction for ammonia synthesis at room temperature and atmospheric pressure has gradually become a research hotspot,exhibiting extremely high development potential.However,the low...In recent years,photocatalytic N_(2) reduction for ammonia synthesis at room temperature and atmospheric pressure has gradually become a research hotspot,exhibiting extremely high development potential.However,the low photogenerated charge separation efficiency and the lack of effective active sites seriously constrain the reaction efficiencies of semiconductor photocatalysts for N_(2) reduction of ammonia synthesis.Therefore,the rational design of catalytic materials is the key to enhance the photocatalytic N_(2) reduction reaction of ammonia synthesis.Transition metal Ru as the active center not only accelerates the adsorption and activation of N_(2) molecules,but also has good selectivity for N_(2) reduction.Moreover,the interaction between the metal and the support can effectively regulate the electronic structure of the active site,accelerate the photogenerated electron transfer,and significantly enhance the photocatalytic activity.Based on this,this review systematically investigates the Ru co-semiconductors to realize efficient photocatalytic N_(2) reduction for ammonia synthesis,and introduces its basic principles.Specifically,the Ru co-semiconductor photocatalytic material systems are introduced,such as TiO2-based,g-C3N4-based,and metal oxide materials,including the design of catalysts,crystal structures,and other characteristics.In addition,the modification strategies of photocatalytic N_(2) reduction ammonia synthesis materials are also presented,including loading/doping,defect engineering,construction of heterojunctions,and crystal surface modulation.Furthermore,the progress and shortcomings of the application of Ru co-semiconductors in these processes are summarized and comprehensively discussed,and the future outlook of Ru co-semiconductors in photocatalytic N_(2) reduction ammonia synthesis applications is proposed.展开更多
The use of visible-light responsive photocatalysts for removing heavy metal ions in wastewater has received great attention.However,the development of photocatalysts with high activity and recyclability remains a huge...The use of visible-light responsive photocatalysts for removing heavy metal ions in wastewater has received great attention.However,the development of photocatalysts with high activity and recyclability remains a huge challenge.Herein,a recyclable carbon fiber cloth-supported porous CdS nanorod photocatalyst was fabricated by a two-step hydrothermal treatment using AgVO_(3) nanowires as templates.The results indicated that under visible-light illumination,the carbon cloth-supported porous CdS nanorods showed improved photocatalytic activity for the reduction of Cr(Ⅵ),with an apparent rate constant exceeding that of carbon cloth-supported CdS nanospheres by a factor of 1.65 times.Moreover,the carbon cloth-supported porous CdS nanorods can be easily separated and be reused.This brings a new perspective for developing photocatalysts with high efficiency and recyclability for wastewater treatment.展开更多
A gold catalyst of Au/pyrenyl‑graphdiyne(Pyr‑GDY)was prepared by anchoring small size of gold nanoparticles(Au NPs)on the surface of Pyr‑GDY for electrocatalytic nitrogen reduction reaction(eNRR),in which Au NPs with ...A gold catalyst of Au/pyrenyl‑graphdiyne(Pyr‑GDY)was prepared by anchoring small size of gold nanoparticles(Au NPs)on the surface of Pyr‑GDY for electrocatalytic nitrogen reduction reaction(eNRR),in which Au NPs with a size of approximately 3.69 nm was evenly distributed on spongy‑like porous Pyr‑GDY.The catalyst exhibited a good electrocatalytic activity for N_(2)reduction in a nitrogen‑saturated electrolyte,with an ammonia yield of 32.1μg·h^(-1)·mg_(cat)^(-1)at-0.3 V(vs RHE),3.5 times higher than that of Au/C(Au NPs anchored on carbon black).In addition,Au/Pyr‑GDY showed a Faraday efficiency(FE)of 26.9%for eNRR,and a good catalysis durability for over 22 h.展开更多
Silicomanganese dust contains large amounts of valuables,such as Si and Mn,which can be used as raw materials for the smelting of silicomanganese.However,the direct addition of dust to the submerged arc furnace can in...Silicomanganese dust contains large amounts of valuables,such as Si and Mn,which can be used as raw materials for the smelting of silicomanganese.However,the direct addition of dust to the submerged arc furnace can influence the permeability of burden due to the fine particle size of dust,which results in incomplete reduction reactions during the smelting process.In this paper,silicomanganese dust,graphite powder,and other additives were pressed to form carbon-containing dust briquettes,and the self-reduction process of the dust briquettes was investigated through the isothermal thermogravimetric method with different carbon–oxygen (C/O) molar ratios,contents of fluxing agents,and reduction temperatures.Various reduction kinetic models for dust briquettes at different temperatures were established.The results show that the reaction fraction of the dust briquettes was about 90%at a C/O molar ratio of 1.2 with optimal reduction efficiency.The addition of CaF_(2)contributed to the decrease in the melting point and viscosity of dust briquettes,which increased their reduction rate.As the reduction temperature increased,the reduction rate of dust briquettes increased.The reduction reaction rate of dust briquettes was controlled through gas-phase diffusion.Meanwhile,their reduction process was analyzed kinetically,with the reaction time of 5 min as the dividing line.The apparent activation energies for the two diffusion stages were 56.10 and 100.52 kJ/mol,respectively.The kinetic equations are expressed as[1-(1-f)^(1/3)]^(2)=0.69e^(-56100/(RT))t and [1-(1-f)^(1/3)]^(2)=2.06e^(-100520/(RT))t.展开更多
The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c...The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density.展开更多
Electrocatalytic N_(2)reduction reaction (NRR) has been considered as a promising and alternative strategy for the synthesis of NH_(3),which will contribute to the goal of carbon neutrality and sustainability.However,...Electrocatalytic N_(2)reduction reaction (NRR) has been considered as a promising and alternative strategy for the synthesis of NH_(3),which will contribute to the goal of carbon neutrality and sustainability.However,this process often suffers from the barrier for N_(2)activation and competitive reactions,resulting in poor NH_(3)yield and low Faraday efficiency (FE).Here,we report a two-dimensiona(2D) ultrathin FeS nanosheets with high conductivity through a facile and scalable method under mild condition.The synthesized FeS catalysts can be used as the work electrode in the electrochemical NRR cell with N_(2)-saturated Na_(2)SO_(4)electrolyte.Such a catalyst shows a NH_(3)yield of 9.0μg·h^(-1)·mg^(-1)(corresponding to 1.47×10^(-4)μmol·s^(-1)·cm^(-2)) and a high FE of 12.4%,which significantly outperformed the other most NRR catalysts.The high catalytic performance of FeS can be attributed to the 2D mackinawite structure,which provides a new insight to explore low-cost and high-performance Fe-based electrocatalysts,as well as accelerates the practical application of the NRR.展开更多
Electrochemical nitrate(NO_(3)^(-))reduction offers a promising route for ammonia(NH_(3))synthesis from industrial wastewater using renewable energy.However,achieving selective and active NO_(3)^(-)to NH_(3)conversion...Electrochemical nitrate(NO_(3)^(-))reduction offers a promising route for ammonia(NH_(3))synthesis from industrial wastewater using renewable energy.However,achieving selective and active NO_(3)^(-)to NH_(3)conversion at low potentials remains challenging due to complex multi-electron transfer processes and competing reactions.Herein,we tackle this challenge by developing a cascade catalysis approach using synergistic active sites at Cu-Fe_(2)O_(3)interfaces,significantly reducing the NO_(3)^(-)to NH_(3)at a low onset potential to about+0.4 V_(RHE).Specifically,Cu optimizes^(*)NO_(3)adsorption,facilitating NO_(3)^(-)to nitrite(NO_(2)-)conversion,while adjacent Fe species in Fe_(2)O_(3)promote the subsequent NO_(2)-reduction to NH_(3)with favorable^(*)NO_(2)adsorption.Electrochemical operating experiments,in situ Raman spectroscopy,and in situ infrared spectroscopy consolidate this improved onset potential and reduction kinetics via cascade catalysis.An NH_(3)partial current density of~423 mA cm^(-2)and an NH_(3)Faradaic efficiency(FENH_(3))of 99.4%were achieved at-0.6 V_(RHE),with a maximum NH_(3)production rate of 2.71 mmol h^(-1)cm^(-2)at-0.8 V_(RHE).Remarkably,the half-cell energy efficiency exceeded 35%at-0.27 V_(RHE)(80%iR corrected),maintaining an FENH_(3)above 90%across a wide range of NO_(3)^(-)concentrations(0.05^(-1)mol L^(-1)).Using 15N isotopic tracing,we confirmed NO_(3)^(-)as the sole nitrogen source and attained a 98%NO_(3)^(-)removal efficiency.The catalyst exhibit stability over 106-h of continuous operation without noticeable degradation.This work highlights distinctive active sites in Cu-Fe_(2)O_(3)for promoting the cascade NO_(3)^(-)to NO_(2)^(-)and NO_(2)^(-)to NH_(3)electrolysis at industrial relevant current densities.展开更多
Metamaterials can control and manipulate acoustic/elastic waves on a subwavelength scale using cavities or additional components.However,the large cavity and weak stiffness components of traditional metamaterials may ...Metamaterials can control and manipulate acoustic/elastic waves on a subwavelength scale using cavities or additional components.However,the large cavity and weak stiffness components of traditional metamaterials may cause a conflict between vibroacoustic reduction and load-bearing capacity,and thus limit their application.Here,we propose a lightweight multifunctional metamaterial that can simultaneously achieve low-frequency sound insulation,broadband vibration reduction,and excellent load-bearing performance,named as vibroacoustic isolation and bearing metamaterial(VIBM).The advent of additive manufacturing technology provides a convenient and reliable method for the fabrication of VIBM samples.The results show that the compressive strength of the VIBM is as high as 9.71 MPa,which is nearly 87.81%higher than that of the conventional grid structure(CGS)under the same volume fraction.Moreover,the vibration and sound transmission are significantly reduced over a low and wide frequency range,which agrees well with the experimental data,and the reduction degree is obviously larger than that obtained by the CGS.The design strategy can effectively realize the key components of metamaterials and improve their application scenarios.展开更多
In order to avoid the waste of iron caused by the direct use of ferronickel slag(FNS)in building materials,the effects of reduction iron extraction on the physical and chemical properties,cementitious reactivity and h...In order to avoid the waste of iron caused by the direct use of ferronickel slag(FNS)in building materials,the effects of reduction iron extraction on the physical and chemical properties,cementitious reactivity and hydration reaction characteristics of FNS and ferrum extraction tailing of nickel slag(FETNS)were studied.The experimental results show that the reduction ferrum extraction method changes the mineral phase composition of the waste slag,breaks the Si-O-Si bond,forms the tetrahedral structure of Si-O-NBO or Si-O-2NBO,and increases the content of active components such as Ca,Si,Mg,and Al.Compared with FNS,the 28 d compressive strength of pastes prepared by FETNS increases by 16.12%,22.57%,33.13%,44.26%,and 57.65%,respectively.The degree of hydration reaction of the composite cementitious systems in the FETNS group is higher than that in the FNS group at different ages,and the content of hydration products such as C-S-H gel and ettringite(AFt)is also higher than that in the FNS group.More hydration products can improve the curing ability to Cr and Mn of the composite cementitious systems in the FETNS group,and reduce the leaching value of Cr and Mn.展开更多
Converting CO_(2)and water into valuable chemicals like plant do is considered a promising approach to address both environmental and energy issues.Taking inspiration from the structures of natural leaves,we designed ...Converting CO_(2)and water into valuable chemicals like plant do is considered a promising approach to address both environmental and energy issues.Taking inspiration from the structures of natural leaves,we designed and synthesized a novel copper-coordinated covalent triazine framework(CuCTF)supported by silicon nanowire arrays on wafer chip.This marks the first-ever application of such a hybrid material in the photoelectrocatalytic reduction of CO_(2)under mild conditions.The Si@CuCTF6 heterojunction has exhibited exceptional selectivity of 95.6%towards multicarbon products(C_(2+))and apparent quantum efficiency(AQE)of 0.89%for carbon-based products.The active sites of the catalysts are derived from the nitrogen atoms of unique triazine ring structure in the ordered porous framework and the abundant Cu-N coordination sites with bipyridine units.Furthermore,through DFT calculations and operando FTIR spectra analysis,we proposed a comprehensive mechanism for the photoelectrocatalytic CO_(2)reduction,confirming the existence of key intermediate species such as*CO_(2)-,*=C=O,*CHO and*CO-CHO etc.This work not only provides a new way to mimic photosynthesis of plant leaves but also gives a new opportunity to enter this research field in the future.展开更多
Layered transition metal hydroxides show distinct advantages in separately co-catalyzing CO_(2)reduction and H_(2)O oxidation at the electron-accumulating and hole-accumulating sites of wrapped heterojunction photocat...Layered transition metal hydroxides show distinct advantages in separately co-catalyzing CO_(2)reduction and H_(2)O oxidation at the electron-accumulating and hole-accumulating sites of wrapped heterojunction photocatalysts,while concurrently preventing side reactions and photocorrosion on the semiconductor surface.Herein,Ni-Co bimetallic hydroxides with varying Ni/Co molar ratios(Ni_(x)Co_(1-x)(OH)_(2),x=1,0.75,0.5,0.25,and 0)were grown in situ on a model 2D/2D S-scheme heterojunction composed of Cu_(2)O nanosheets and Fe_(2)O_(3)nanoplates to form a series of Cu_(2)O/Fe_(2)O_(3)@Ni_(x)Co_(1-x)(OH)_(2)(CF@NiCo)photocatalysts.The combined experimental and theoretical investigation demonstrates that incorporating an appropriate amount of Co into Ni(OH)_(2)not only modulates the energy band structure of Ni_(x)Co_(1-x)(OH)_(2),balances the electron-and hole-trapping abilities of the bifunctional cocatalyst and maximizes the charge separation efficiency of the heterojunction,but also regulates the d-band center of Ni_(x)Co_(1-x)(OH)_(2),reinforcing the adsorption and activation of CO_(2)and H_(2)O on the cocatalyst surface and lowering the rate-limiting barriers in the CO_(2)-to-CO and H_(2)O-to-O_(2)conversion.Benefiting from the Ni-Co synergy,the redox reactions proceed stoichiometrically.The optimized CF@Ni_(0.75)Co_(0.25)achieves CO and O_(2)yields of 552.7 and 313.0μmol gcat^(-1)h^(-1),respectively,11.3/9.9,1.6/1.7,and 4.5/5.9-fold higher than those of CF,CF@Ni,and CF@Co.This study offers valuable insights into the design of bifunctional noble-metal-free cocatalysts for high-performance artificial photosynthesis.展开更多
With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic...With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation.展开更多
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production...The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs.展开更多
Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for ca...Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO_(2), Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C_(2+) compounds through C–C coupling process. Herein, the basic principles of photocatalytic CO_(2) reduction reactions(PCO_(2)RR) and electrocatalytic CO_(2) reduction reaction(ECO_(2)RR) and the pathways for the generation C_(2+) products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO_(2)RR and ECO_(2)RR is emphasized. Through a review of recent studies on PCO_(2)RR and ECO_(2)RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C_(2+) products. Finally, the opportunities and challenges associated with Cu-based materials in the CO_(2) catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO_(2) reduction processes in the future.展开更多
Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS m...Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS method for the global variance reduction problem based on the AIS method,which was implemented in the Monte Carlo program MCShield.The proposed method was validated using the VENUS-Ⅲ international benchmark problem and a self-shielding calculation example.The results from the VENUS-Ⅲ benchmark problem showed that the grid-AIS method achieved a significant reduction in the variance of the statistical errors of the MESH grids,decreasing from 1.08×10^(-2) to 3.84×10^(-3),representing a 64.00% reduction.This demonstrates that the grid-AIS method is effective in addressing global issues.The results of the selfshielding calculation demonstrate that the grid-AIS method produced accurate computational results.Moreover,the grid-AIS method exhibited a computational efficiency approximately one order of magnitude higher than that of the AIS method and approximately two orders of magnitude higher than that of the conventional Monte Carlo method.展开更多
Rational design and construction of oxygen reduction reaction(ORR)electrocatalysts with high activity,good stability,and low price are essential for the practical applications of renewable energy conversion devices,su...Rational design and construction of oxygen reduction reaction(ORR)electrocatalysts with high activity,good stability,and low price are essential for the practical applications of renewable energy conversion devices,such as metal-air batteries.Electronic modification through constructing metal/semiconductor Schottky heterointerface represents a powerful strategy to enhance the electrochemical performance.Herein,we demonstrate a concept of Schottky electrocatalyst composed of uniform Co nanoparticles in situ anchored on the carbon nanotubes aligned on the carbon nanosheets(denoted as Co@N-CNTs/NSs hereafter)toward ORR.Both experimental findings and theoretical simulation testify that the rectifying contact could impel the voluntary electron flow from Co to N-CNTs/NSs and create an internal electric field,thereby boosting the electron transfer rate and improving the intrinsic activity.As a consequence,the Co@N-CNTs/NSs deliver outstanding ORR activity,impressive long-term durability,excellent methanol tolerance,and good performance as the air-cathode in the Zn-air batteries.The design concept of Schottky contact may provide the innovational inspirations for the synthesis of advanced catalysts in sustainable energy conversion fields.展开更多
Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst...Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst for ORR due to its weak Fenton reaction activity and strong graphitization catalysis.Here,we developed a facile strategy for anchoring the atomically dispersed nitrogen-coordinated single Mn sites on carbon nanosheets(MnNCS)from an Mn-hexamine coordination framework.The atomically dispersed Mn-N_(4) sites were dispersed on ultrathin carbon nanosheets with a hierarchically porous structure.The optimized MnNCS displayed an excellent ORR performance in half-cells(0.89 V vs.reversible hydrogen electrode(RHE)in base and 0.76 V vs.RHE in acid in half-wave potential)and Zn-air batteries(233 mW cm^(−2)in peak power density),along with significantly enhanced stability.Density functional theory calculations further corroborated that the Mn-N_(4)-C(12)site has favorable adsorption of*OH as the rate-determining step.These findings demonstrate that the metal-hexamine coordination framework can be used as a model system for the rational design of highly active atomic metal catalysts for energy applications.展开更多
We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in...We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.展开更多
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t...Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.展开更多
基金supported by Taishan Scholars Foundation of Shandong province(tsqn 201909058)。
文摘In recent years,photocatalytic N_(2) reduction for ammonia synthesis at room temperature and atmospheric pressure has gradually become a research hotspot,exhibiting extremely high development potential.However,the low photogenerated charge separation efficiency and the lack of effective active sites seriously constrain the reaction efficiencies of semiconductor photocatalysts for N_(2) reduction of ammonia synthesis.Therefore,the rational design of catalytic materials is the key to enhance the photocatalytic N_(2) reduction reaction of ammonia synthesis.Transition metal Ru as the active center not only accelerates the adsorption and activation of N_(2) molecules,but also has good selectivity for N_(2) reduction.Moreover,the interaction between the metal and the support can effectively regulate the electronic structure of the active site,accelerate the photogenerated electron transfer,and significantly enhance the photocatalytic activity.Based on this,this review systematically investigates the Ru co-semiconductors to realize efficient photocatalytic N_(2) reduction for ammonia synthesis,and introduces its basic principles.Specifically,the Ru co-semiconductor photocatalytic material systems are introduced,such as TiO2-based,g-C3N4-based,and metal oxide materials,including the design of catalysts,crystal structures,and other characteristics.In addition,the modification strategies of photocatalytic N_(2) reduction ammonia synthesis materials are also presented,including loading/doping,defect engineering,construction of heterojunctions,and crystal surface modulation.Furthermore,the progress and shortcomings of the application of Ru co-semiconductors in these processes are summarized and comprehensively discussed,and the future outlook of Ru co-semiconductors in photocatalytic N_(2) reduction ammonia synthesis applications is proposed.
文摘The use of visible-light responsive photocatalysts for removing heavy metal ions in wastewater has received great attention.However,the development of photocatalysts with high activity and recyclability remains a huge challenge.Herein,a recyclable carbon fiber cloth-supported porous CdS nanorod photocatalyst was fabricated by a two-step hydrothermal treatment using AgVO_(3) nanowires as templates.The results indicated that under visible-light illumination,the carbon cloth-supported porous CdS nanorods showed improved photocatalytic activity for the reduction of Cr(Ⅵ),with an apparent rate constant exceeding that of carbon cloth-supported CdS nanospheres by a factor of 1.65 times.Moreover,the carbon cloth-supported porous CdS nanorods can be easily separated and be reused.This brings a new perspective for developing photocatalysts with high efficiency and recyclability for wastewater treatment.
文摘A gold catalyst of Au/pyrenyl‑graphdiyne(Pyr‑GDY)was prepared by anchoring small size of gold nanoparticles(Au NPs)on the surface of Pyr‑GDY for electrocatalytic nitrogen reduction reaction(eNRR),in which Au NPs with a size of approximately 3.69 nm was evenly distributed on spongy‑like porous Pyr‑GDY.The catalyst exhibited a good electrocatalytic activity for N_(2)reduction in a nitrogen‑saturated electrolyte,with an ammonia yield of 32.1μg·h^(-1)·mg_(cat)^(-1)at-0.3 V(vs RHE),3.5 times higher than that of Au/C(Au NPs anchored on carbon black).In addition,Au/Pyr‑GDY showed a Faraday efficiency(FE)of 26.9%for eNRR,and a good catalysis durability for over 22 h.
基金financially supported by the Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking (No. KF-20-3)Shandong Postdoctoral Science Foundation, China (No. SDCX-ZG-202301014)。
文摘Silicomanganese dust contains large amounts of valuables,such as Si and Mn,which can be used as raw materials for the smelting of silicomanganese.However,the direct addition of dust to the submerged arc furnace can influence the permeability of burden due to the fine particle size of dust,which results in incomplete reduction reactions during the smelting process.In this paper,silicomanganese dust,graphite powder,and other additives were pressed to form carbon-containing dust briquettes,and the self-reduction process of the dust briquettes was investigated through the isothermal thermogravimetric method with different carbon–oxygen (C/O) molar ratios,contents of fluxing agents,and reduction temperatures.Various reduction kinetic models for dust briquettes at different temperatures were established.The results show that the reaction fraction of the dust briquettes was about 90%at a C/O molar ratio of 1.2 with optimal reduction efficiency.The addition of CaF_(2)contributed to the decrease in the melting point and viscosity of dust briquettes,which increased their reduction rate.As the reduction temperature increased,the reduction rate of dust briquettes increased.The reduction reaction rate of dust briquettes was controlled through gas-phase diffusion.Meanwhile,their reduction process was analyzed kinetically,with the reaction time of 5 min as the dividing line.The apparent activation energies for the two diffusion stages were 56.10 and 100.52 kJ/mol,respectively.The kinetic equations are expressed as[1-(1-f)^(1/3)]^(2)=0.69e^(-56100/(RT))t and [1-(1-f)^(1/3)]^(2)=2.06e^(-100520/(RT))t.
基金supported by Shanxi Province Science Foundation for Youths(202203021212300)Taiyuan University of Science and Technology Scientific Research Initial Funding(20212064)Outstanding Doctoral Award Fund in Shanxi Province(20222060).
文摘The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density.
基金financially supported by the Fundamental Research Program of Shanxi Province, China (Nos. 202303021222190, 202203021212243, and 2023L160)the National Natural Science Foundation of China (No. 22202151 and 22209033)the Fundamental Research Program of Shanxi Normal University, China (No. J CYJ2023015)。
文摘Electrocatalytic N_(2)reduction reaction (NRR) has been considered as a promising and alternative strategy for the synthesis of NH_(3),which will contribute to the goal of carbon neutrality and sustainability.However,this process often suffers from the barrier for N_(2)activation and competitive reactions,resulting in poor NH_(3)yield and low Faraday efficiency (FE).Here,we report a two-dimensiona(2D) ultrathin FeS nanosheets with high conductivity through a facile and scalable method under mild condition.The synthesized FeS catalysts can be used as the work electrode in the electrochemical NRR cell with N_(2)-saturated Na_(2)SO_(4)electrolyte.Such a catalyst shows a NH_(3)yield of 9.0μg·h^(-1)·mg^(-1)(corresponding to 1.47×10^(-4)μmol·s^(-1)·cm^(-2)) and a high FE of 12.4%,which significantly outperformed the other most NRR catalysts.The high catalytic performance of FeS can be attributed to the 2D mackinawite structure,which provides a new insight to explore low-cost and high-performance Fe-based electrocatalysts,as well as accelerates the practical application of the NRR.
文摘Electrochemical nitrate(NO_(3)^(-))reduction offers a promising route for ammonia(NH_(3))synthesis from industrial wastewater using renewable energy.However,achieving selective and active NO_(3)^(-)to NH_(3)conversion at low potentials remains challenging due to complex multi-electron transfer processes and competing reactions.Herein,we tackle this challenge by developing a cascade catalysis approach using synergistic active sites at Cu-Fe_(2)O_(3)interfaces,significantly reducing the NO_(3)^(-)to NH_(3)at a low onset potential to about+0.4 V_(RHE).Specifically,Cu optimizes^(*)NO_(3)adsorption,facilitating NO_(3)^(-)to nitrite(NO_(2)-)conversion,while adjacent Fe species in Fe_(2)O_(3)promote the subsequent NO_(2)-reduction to NH_(3)with favorable^(*)NO_(2)adsorption.Electrochemical operating experiments,in situ Raman spectroscopy,and in situ infrared spectroscopy consolidate this improved onset potential and reduction kinetics via cascade catalysis.An NH_(3)partial current density of~423 mA cm^(-2)and an NH_(3)Faradaic efficiency(FENH_(3))of 99.4%were achieved at-0.6 V_(RHE),with a maximum NH_(3)production rate of 2.71 mmol h^(-1)cm^(-2)at-0.8 V_(RHE).Remarkably,the half-cell energy efficiency exceeded 35%at-0.27 V_(RHE)(80%iR corrected),maintaining an FENH_(3)above 90%across a wide range of NO_(3)^(-)concentrations(0.05^(-1)mol L^(-1)).Using 15N isotopic tracing,we confirmed NO_(3)^(-)as the sole nitrogen source and attained a 98%NO_(3)^(-)removal efficiency.The catalyst exhibit stability over 106-h of continuous operation without noticeable degradation.This work highlights distinctive active sites in Cu-Fe_(2)O_(3)for promoting the cascade NO_(3)^(-)to NO_(2)^(-)and NO_(2)^(-)to NH_(3)electrolysis at industrial relevant current densities.
基金Project supported by the National Natural Science Foundation of China(Nos.11991032 and 52241103)the Hunan Province Graduate Research Innovation Project of China(No.KY0409052440)。
文摘Metamaterials can control and manipulate acoustic/elastic waves on a subwavelength scale using cavities or additional components.However,the large cavity and weak stiffness components of traditional metamaterials may cause a conflict between vibroacoustic reduction and load-bearing capacity,and thus limit their application.Here,we propose a lightweight multifunctional metamaterial that can simultaneously achieve low-frequency sound insulation,broadband vibration reduction,and excellent load-bearing performance,named as vibroacoustic isolation and bearing metamaterial(VIBM).The advent of additive manufacturing technology provides a convenient and reliable method for the fabrication of VIBM samples.The results show that the compressive strength of the VIBM is as high as 9.71 MPa,which is nearly 87.81%higher than that of the conventional grid structure(CGS)under the same volume fraction.Moreover,the vibration and sound transmission are significantly reduced over a low and wide frequency range,which agrees well with the experimental data,and the reduction degree is obviously larger than that obtained by the CGS.The design strategy can effectively realize the key components of metamaterials and improve their application scenarios.
基金Funded by the Science and Technology Program of Gansu Province(Nos.23JRRA799 and 24JRRA213)the National Natural Science Foundation of China(Nos.52178216,52008196,and U21A20150)。
文摘In order to avoid the waste of iron caused by the direct use of ferronickel slag(FNS)in building materials,the effects of reduction iron extraction on the physical and chemical properties,cementitious reactivity and hydration reaction characteristics of FNS and ferrum extraction tailing of nickel slag(FETNS)were studied.The experimental results show that the reduction ferrum extraction method changes the mineral phase composition of the waste slag,breaks the Si-O-Si bond,forms the tetrahedral structure of Si-O-NBO or Si-O-2NBO,and increases the content of active components such as Ca,Si,Mg,and Al.Compared with FNS,the 28 d compressive strength of pastes prepared by FETNS increases by 16.12%,22.57%,33.13%,44.26%,and 57.65%,respectively.The degree of hydration reaction of the composite cementitious systems in the FETNS group is higher than that in the FNS group at different ages,and the content of hydration products such as C-S-H gel and ettringite(AFt)is also higher than that in the FNS group.More hydration products can improve the curing ability to Cr and Mn of the composite cementitious systems in the FETNS group,and reduce the leaching value of Cr and Mn.
基金supported by Natural Science Foundation of Gansu Province(23JRRA745)the Fundamental Research Funds for the Central Universities(lzujbky2021-sp55).
文摘Converting CO_(2)and water into valuable chemicals like plant do is considered a promising approach to address both environmental and energy issues.Taking inspiration from the structures of natural leaves,we designed and synthesized a novel copper-coordinated covalent triazine framework(CuCTF)supported by silicon nanowire arrays on wafer chip.This marks the first-ever application of such a hybrid material in the photoelectrocatalytic reduction of CO_(2)under mild conditions.The Si@CuCTF6 heterojunction has exhibited exceptional selectivity of 95.6%towards multicarbon products(C_(2+))and apparent quantum efficiency(AQE)of 0.89%for carbon-based products.The active sites of the catalysts are derived from the nitrogen atoms of unique triazine ring structure in the ordered porous framework and the abundant Cu-N coordination sites with bipyridine units.Furthermore,through DFT calculations and operando FTIR spectra analysis,we proposed a comprehensive mechanism for the photoelectrocatalytic CO_(2)reduction,confirming the existence of key intermediate species such as*CO_(2)-,*=C=O,*CHO and*CO-CHO etc.This work not only provides a new way to mimic photosynthesis of plant leaves but also gives a new opportunity to enter this research field in the future.
文摘Layered transition metal hydroxides show distinct advantages in separately co-catalyzing CO_(2)reduction and H_(2)O oxidation at the electron-accumulating and hole-accumulating sites of wrapped heterojunction photocatalysts,while concurrently preventing side reactions and photocorrosion on the semiconductor surface.Herein,Ni-Co bimetallic hydroxides with varying Ni/Co molar ratios(Ni_(x)Co_(1-x)(OH)_(2),x=1,0.75,0.5,0.25,and 0)were grown in situ on a model 2D/2D S-scheme heterojunction composed of Cu_(2)O nanosheets and Fe_(2)O_(3)nanoplates to form a series of Cu_(2)O/Fe_(2)O_(3)@Ni_(x)Co_(1-x)(OH)_(2)(CF@NiCo)photocatalysts.The combined experimental and theoretical investigation demonstrates that incorporating an appropriate amount of Co into Ni(OH)_(2)not only modulates the energy band structure of Ni_(x)Co_(1-x)(OH)_(2),balances the electron-and hole-trapping abilities of the bifunctional cocatalyst and maximizes the charge separation efficiency of the heterojunction,but also regulates the d-band center of Ni_(x)Co_(1-x)(OH)_(2),reinforcing the adsorption and activation of CO_(2)and H_(2)O on the cocatalyst surface and lowering the rate-limiting barriers in the CO_(2)-to-CO and H_(2)O-to-O_(2)conversion.Benefiting from the Ni-Co synergy,the redox reactions proceed stoichiometrically.The optimized CF@Ni_(0.75)Co_(0.25)achieves CO and O_(2)yields of 552.7 and 313.0μmol gcat^(-1)h^(-1),respectively,11.3/9.9,1.6/1.7,and 4.5/5.9-fold higher than those of CF,CF@Ni,and CF@Co.This study offers valuable insights into the design of bifunctional noble-metal-free cocatalysts for high-performance artificial photosynthesis.
基金financially supported by the Scientific Research Foundation of North China University of Technology(Grant Nos.11005136024XN147-87 and 110051360024XN151-86).
文摘With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation.
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.
基金supported by National Natural Science Foundation of China(Nos.52274298,51974114,51672075 and 21908049)China Postdoctoral Science Foundation(2020M682560)+4 种基金International Postdoctoral Exchange Fel owship Program(Grant No.PC2022020)Science&Technology innovation program of Hunan province(2020RC2024 and 2022RC3037)Hunan Provincial Natural Science Foundation of China(No.2020JJ4175)Science&Technology talents lifting project of Hunan Province(No.2022TJ-N16)Scientific Research Fund of Hunan Provincial Education Department(No.21A0392)
文摘The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs.
基金supported by the National Natural Science Foundation of China (22178149)Jiangsu Distinguished Professor Program+4 种基金Natural Science Foundation of Jiangsu Province for Outstanding Youth Scientists (BK20211599)Key R and D Project of Zhenjiang City (CQ2022001)Scientific Research Startup Foundation of Jiangsu University (Nos. 202096 and 22JDG020)Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment of Fuzhou University (SKLPEE-KF202310)the Opening Project of Structural Optimization and Application of Functional Molecules Key Laboratory of Sichuan Province (2023GNFZ-01)。
文摘Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO_(2), Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C_(2+) compounds through C–C coupling process. Herein, the basic principles of photocatalytic CO_(2) reduction reactions(PCO_(2)RR) and electrocatalytic CO_(2) reduction reaction(ECO_(2)RR) and the pathways for the generation C_(2+) products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO_(2)RR and ECO_(2)RR is emphasized. Through a review of recent studies on PCO_(2)RR and ECO_(2)RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C_(2+) products. Finally, the opportunities and challenges associated with Cu-based materials in the CO_(2) catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO_(2) reduction processes in the future.
基金supported by the Platform Development Foundation of the China Institute for Radiation Protection(No.YP21030101)the National Natural Science Foundation of China(General Program)(Nos.12175114,U2167209)+1 种基金the National Key R&D Program of China(No.2021YFF0603600)the Tsinghua University Initiative Scientific Research Program(No.20211080081).
文摘Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS method for the global variance reduction problem based on the AIS method,which was implemented in the Monte Carlo program MCShield.The proposed method was validated using the VENUS-Ⅲ international benchmark problem and a self-shielding calculation example.The results from the VENUS-Ⅲ benchmark problem showed that the grid-AIS method achieved a significant reduction in the variance of the statistical errors of the MESH grids,decreasing from 1.08×10^(-2) to 3.84×10^(-3),representing a 64.00% reduction.This demonstrates that the grid-AIS method is effective in addressing global issues.The results of the selfshielding calculation demonstrate that the grid-AIS method produced accurate computational results.Moreover,the grid-AIS method exhibited a computational efficiency approximately one order of magnitude higher than that of the AIS method and approximately two orders of magnitude higher than that of the conventional Monte Carlo method.
基金This study was financially supported by the National Natural Science Foundation of China(Grant/Award Number:22232004,22272179,21972068,and 22072067).
文摘Rational design and construction of oxygen reduction reaction(ORR)electrocatalysts with high activity,good stability,and low price are essential for the practical applications of renewable energy conversion devices,such as metal-air batteries.Electronic modification through constructing metal/semiconductor Schottky heterointerface represents a powerful strategy to enhance the electrochemical performance.Herein,we demonstrate a concept of Schottky electrocatalyst composed of uniform Co nanoparticles in situ anchored on the carbon nanotubes aligned on the carbon nanosheets(denoted as Co@N-CNTs/NSs hereafter)toward ORR.Both experimental findings and theoretical simulation testify that the rectifying contact could impel the voluntary electron flow from Co to N-CNTs/NSs and create an internal electric field,thereby boosting the electron transfer rate and improving the intrinsic activity.As a consequence,the Co@N-CNTs/NSs deliver outstanding ORR activity,impressive long-term durability,excellent methanol tolerance,and good performance as the air-cathode in the Zn-air batteries.The design concept of Schottky contact may provide the innovational inspirations for the synthesis of advanced catalysts in sustainable energy conversion fields.
基金Basic and Applied Basic Research Foundation of Guangdong Province,Grant/Award Numbers:2021A1515110245,2022A1515140108,2023B1515040013National Youth Top-notch Talent Support Program,Grant/Award Number:x2qsA4210090+5 种基金Guangzhou Key Research and Development Program,Grant/Award Number:SL2022B03J01256Guangdong Provincial Key Laboratory of Distributed Energy Systems,Grant/Award Number:2020B1212060075Engineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes,Grant/Award Number:2016GCZX009State Key Laboratory of Pulp and Paper Engineering,Grant/Award Numbers:202215,2022PY02Key projects of social science and technology development in Dongguan,Grant/Award Number:20231800936352National Natural Science Foundation of China,Grant/Award Numbers:21736003,21905044,31971614,32071714。
文摘Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst for ORR due to its weak Fenton reaction activity and strong graphitization catalysis.Here,we developed a facile strategy for anchoring the atomically dispersed nitrogen-coordinated single Mn sites on carbon nanosheets(MnNCS)from an Mn-hexamine coordination framework.The atomically dispersed Mn-N_(4) sites were dispersed on ultrathin carbon nanosheets with a hierarchically porous structure.The optimized MnNCS displayed an excellent ORR performance in half-cells(0.89 V vs.reversible hydrogen electrode(RHE)in base and 0.76 V vs.RHE in acid in half-wave potential)and Zn-air batteries(233 mW cm^(−2)in peak power density),along with significantly enhanced stability.Density functional theory calculations further corroborated that the Mn-N_(4)-C(12)site has favorable adsorption of*OH as the rate-determining step.These findings demonstrate that the metal-hexamine coordination framework can be used as a model system for the rational design of highly active atomic metal catalysts for energy applications.
基金the Natural Science Foundation of China(11922415,12274471)Guangdong Basic and Applied Basic Research Foundation(2022A1515011168,2019A1515011718,2019A1515011337)the Key Research and Development Program of Guangdong Province,China(2019B110209003).
文摘We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.
基金supported by National Natural Science Foundation of China(12372049)Science and Technology Program of China National Accreditation Service for Confor-mity Assessment(2022CNAS15)+1 种基金Sichuan Science and Technology Program(2023JDRC0062)Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.