The development of renewable energy power generation for carbon neutrality and energy transition has been increasing worldwide,leading to an increasing demand for high-power conversion.Compared with traditional interl...The development of renewable energy power generation for carbon neutrality and energy transition has been increasing worldwide,leading to an increasing demand for high-power conversion.Compared with traditional interleaved paralleling,the integrated paralleling of three-level inverters can further reduce the output harmonics.Moreover,a well-designed switching sequence ensures that the average circulating current is zero,which provides a superior and feasible solution to satisfy the demands of high-power operations.However,a large instantaneous loop current exists between shunt converters,which leads to disadvantages such as higher switching device stress and loss.In this study,by utilizing the state-distribution redundancy provided by the integrated modulation process,a new design for switch-ing sequences is suggested for the integrated modulation of shunt three-level converters.This design aims to reduce the circulating current while better preserving the same output current harmonics than traditional parallel methods.The proposal includes an in-depth analysis and explanation of the implementation process.Finally,the proposed method is validated through simulations and prototype experi-ments.The results indicate that compared with traditional methods,the adoption of the improved switching sequence presented in this study leads to an average reduction of 3.2%in the total harmonic distortion of the inverter’s output and an average decrease of 32%in the amplitude of the circulating current.Both the output harmonics and circulating currents are significantly suppressed across various modulation indices.展开更多
提出了一种CLLC型模块化输入串联输出并联的直流变压器技术方案,实现了高压直流电网和低压直流电网之间的电压变换和功率的双向传输。直流变压器的子模块采用CLLC串联谐振变压器,通过开环定频控制模式和完全谐振工作模式,效率高、电压...提出了一种CLLC型模块化输入串联输出并联的直流变压器技术方案,实现了高压直流电网和低压直流电网之间的电压变换和功率的双向传输。直流变压器的子模块采用CLLC串联谐振变压器,通过开环定频控制模式和完全谐振工作模式,效率高、电压增益恒定,同时具有输入自然均压和输出自然均流的特点。为了抑制较大的启动冲击电流,提出了一种软启动控制策略:通过脉冲调制的方式控制输入端全桥电路的输出电压占空比D从Dmin缓慢增加到0.5。搭建了一台500 kW±7.5 k V/800 V直流变压器实验样机,实验结果验证了所提方案的正确性和可行性。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51977046)Wuxi University Research Start-up Fund for Introduced Talent(2022r021).
文摘The development of renewable energy power generation for carbon neutrality and energy transition has been increasing worldwide,leading to an increasing demand for high-power conversion.Compared with traditional interleaved paralleling,the integrated paralleling of three-level inverters can further reduce the output harmonics.Moreover,a well-designed switching sequence ensures that the average circulating current is zero,which provides a superior and feasible solution to satisfy the demands of high-power operations.However,a large instantaneous loop current exists between shunt converters,which leads to disadvantages such as higher switching device stress and loss.In this study,by utilizing the state-distribution redundancy provided by the integrated modulation process,a new design for switch-ing sequences is suggested for the integrated modulation of shunt three-level converters.This design aims to reduce the circulating current while better preserving the same output current harmonics than traditional parallel methods.The proposal includes an in-depth analysis and explanation of the implementation process.Finally,the proposed method is validated through simulations and prototype experi-ments.The results indicate that compared with traditional methods,the adoption of the improved switching sequence presented in this study leads to an average reduction of 3.2%in the total harmonic distortion of the inverter’s output and an average decrease of 32%in the amplitude of the circulating current.Both the output harmonics and circulating currents are significantly suppressed across various modulation indices.
文摘提出了一种CLLC型模块化输入串联输出并联的直流变压器技术方案,实现了高压直流电网和低压直流电网之间的电压变换和功率的双向传输。直流变压器的子模块采用CLLC串联谐振变压器,通过开环定频控制模式和完全谐振工作模式,效率高、电压增益恒定,同时具有输入自然均压和输出自然均流的特点。为了抑制较大的启动冲击电流,提出了一种软启动控制策略:通过脉冲调制的方式控制输入端全桥电路的输出电压占空比D从Dmin缓慢增加到0.5。搭建了一台500 kW±7.5 k V/800 V直流变压器实验样机,实验结果验证了所提方案的正确性和可行性。