期刊文献+
共找到348,635篇文章
< 1 2 250 >
每页显示 20 50 100
Simulation-Based Optimization for the Fast Fashion Replenishment
1
作者 齐洁 张晶 《Journal of Donghua University(English Edition)》 EI CAS 2016年第3期495-500,共6页
Fast fashion is a commercial pattern which provides fashionable clothes at affordable price.This mode needs rapid response supply chain to respond to varying fashion trends.New styles are introduced in every sale peri... Fast fashion is a commercial pattern which provides fashionable clothes at affordable price.This mode needs rapid response supply chain to respond to varying fashion trends.New styles are introduced in every sale period to cover fashion trends.In order to maximize profits,replenishment quantity of each style should be decided in every period.The purchasing and replenishing process over multiple periods based on uncertainty customer demand is modeled,which is formulated by a stochastic choice process.Heterogeneous consumers visit a store in a stochastic sequence and choosing dynamically from the available fashion styles(buy or not buy) according to a utility maximization criterion.The purchase process in a retail shop for multi-period is simulated.An algorithm which combines simulated anneal(SA) with gradient estimation is proposed to find the optimal replenishing strategy from the simulation program. 展开更多
关键词 fast fashion supply chain stochastic choice REPLENISHMENT simulation-based optimization simulated annealing
在线阅读 下载PDF
Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
2
作者 Qing-Fei Gao Yi-Zhou Tao +2 位作者 Yan-Fang Wei Cheng Wu Li-Yun Dong 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第3期285-291,共7页
We propose an extended cellular automaton model based on the floor field. The floor field can be changed accordingly in the presence of pedestrians. Furthermore, the effects of pedestrians with different speeds are di... We propose an extended cellular automaton model based on the floor field. The floor field can be changed accordingly in the presence of pedestrians. Furthermore, the effects of pedestrians with different speeds are distinguished, i.e., still pedestrians result in more increment of the floor field than moving ones. The improved floor field reflects impact of pedestrians as movable obstacles on evacuation process. The presented model was calibrated by comparing with previous studies. It is shown that this model provides a better description of crowd evacuation both qualitatively and quantitatively.Then we investigated crowd evacuation from a middle-size theater. Four possible designs of aisles in the theater are studied and one of them is the actual design in reality. Numerical simulation shows that the actual design of the theater is reasonable.Then we optimize the position of the side exit in order to reduce the evacuation time. It is shown that the utilization of the two exits at bottom is less than that of the side exits. When the position of the side exit is shifted upwards by about 1.6 m,it is found that the evacuation time reaches its minimum. 展开更多
关键词 cellular AUTOMATON floor field crowd EVACUATION optimization of PEDESTRIAN facilities
在线阅读 下载PDF
Simulation-based optimization of control policy on multi-echelon inventory system for fresh agricultural products 被引量:2
3
作者 Guangyin Xu Jihao Feng +2 位作者 Fenglei Chen Heng Wang Zhenfeng Wang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第2期184-194,共11页
As fresh agricultural products are perishable and vulnerable,reducing inventory cost is a strategic target for supply chain enterprises.How to design a reliable multi-echelon inventory control policy is still a great ... As fresh agricultural products are perishable and vulnerable,reducing inventory cost is a strategic target for supply chain enterprises.How to design a reliable multi-echelon inventory control policy is still a great challenge.Therefore,the inventory cost of a three-level fresh agricultural products inventory system was firstly mathematically analyzed.Then,the simulation-based optimization model of the multi-echelon inventory system for fresh agricultural products was proposed by using the Flexsim simulation software and the improved particle swarm optimization algorithm.Finally,the multi-echelon inventory system is simulated based on a large number of survey data.Simulation results demonstrate that the proposed simulation-based optimization model of multi-echelon inventory system for fresh agricultural products can provide decision-making and technical support for the formulation of inventory control policy,and also it shows that the modeling of system simulation is an effective method to solve the problem of complex system. 展开更多
关键词 multi-echelon inventory system simulation-based optimization fresh agricultural products control policy Flexsim simulation software
原文传递
A Multi-Objective Particle Swarm Optimization Algorithm Based on Decomposition and Multi-Selection Strategy
4
作者 Li Ma Cai Dai +1 位作者 Xingsi Xue Cheng Peng 《Computers, Materials & Continua》 SCIE EI 2025年第1期997-1026,共30页
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition... The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance. 展开更多
关键词 Multi-objective optimization multi-objective particle swarm optimization DECOMPOSITION multi-selection strategy
在线阅读 下载PDF
Evolutionary Particle Swarm Optimization Algorithm Based on Collective Prediction for Deployment of Base Stations
5
作者 Jiaying Shen Donglin Zhu +5 位作者 Yujia Liu Leyi Wang Jialing Hu Zhaolong Ouyang Changjun Zhou Taiyong Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期345-369,共25页
The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(I... The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(IoT)relies on the support of base stations,which provide a solid foundation for achieving a more intelligent way of living.In a specific area,achieving higher signal coverage with fewer base stations has become an urgent problem.Therefore,this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization(EPSO)algorithm based on collective prediction,referred to herein as ECPPSO.Introducing a new strategy called neighbor-based evolution prediction(NEP)addresses the issue of premature convergence often encountered by PSO.ECPPSO also employs a strengthening evolution(SE)strategy to enhance the algorithm’s global search capability and efficiency,ensuring enhanced robustness and a faster convergence speed when solving complex optimization problems.To better adapt to the actual communication needs of base stations,this article conducts simulation experiments by changing the number of base stations.The experimental results demonstrate thatunder the conditionof 50 ormore base stations,ECPPSOconsistently achieves the best coverage rate exceeding 95%,peaking at 99.4400%when the number of base stations reaches 80.These results validate the optimization capability of the ECPPSO algorithm,proving its feasibility and effectiveness.Further ablative experiments and comparisons with other algorithms highlight the advantages of ECPPSO. 展开更多
关键词 Particle swarm optimization effective coverage area global optimization base station deployment
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
6
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Prediction and optimization of flue pressure in sintering process based on SHAP
7
作者 Mingyu Wang Jue Tang +2 位作者 Mansheng Chu Quan Shi Zhen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期346-359,共14页
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a... Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect. 展开更多
关键词 sintering process flue pressure shapley additive explanation PREDICTION optimization
在线阅读 下载PDF
Prediction of Shear Bond Strength of Asphalt Concrete Pavement Using Machine Learning Models and Grid Search Optimization Technique
8
作者 Quynh-Anh Thi Bui Dam Duc Nguyen +2 位作者 Hiep Van Le Indra Prakash Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期691-712,共22页
Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Ext... Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design. 展开更多
关键词 Shear bond asphalt pavement grid search optimization machine learning
在线阅读 下载PDF
Topology, Size, and Shape Optimization in Civil Engineering Structures: A Review
9
作者 Ahmed Manguri Hogr Hassan +1 位作者 Najmadeen Saeed Robert Jankowski 《Computer Modeling in Engineering & Sciences》 2025年第2期933-971,共39页
The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal de... The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal design,by considering material performance,cost,and structural safety.The design approaches aim to reduce the built environment’s energy use and carbon emissions.This comprehensive review examines optimization techniques,including size,shape,topology,and multi-objective approaches,by integrating these methodologies.The trends and advancements that contribute to developing more efficient,cost-effective,and reliable structural designs were identified.The review also discusses emerging technologies,such as machine learning applications with different optimization techniques.Optimization of truss,frame,tensegrity,reinforced concrete,origami,pantographic,and adaptive structures are covered and discussed.Optimization techniques are explained,including metaheuristics,genetic algorithm,particle swarm,ant-colony,harmony search algorithm,and their applications with mentioned structure types.Linear and non-linear structures,including geometric and material nonlinearity,are distinguished.The role of optimization in active structures,structural design,seismic design,form-finding,and structural control is taken into account,and the most recent techniques and advancements are mentioned. 展开更多
关键词 Structural optimization topology optimization size optimization shape optimization multi-objective optimization
在线阅读 下载PDF
Grid-Connected/Islanded Switching Control Strategy for Photovoltaic Storage Hybrid Inverters Based on Modified Chimpanzee Optimization Algorithm
10
作者 Chao Zhou Narisu Wang +1 位作者 Fuyin Ni Wenchao Zhang 《Energy Engineering》 EI 2025年第1期265-284,共20页
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th... Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability. 展开更多
关键词 Photovoltaic storage hybrid inverters modified chimpanzee optimization algorithm droop control seamless switching
在线阅读 下载PDF
Recent Advancements in the Optimization Capacity Configuration and Coordination Operation Strategy of Wind-Solar Hybrid Storage System
11
作者 Hongliang Hao Caifeng Wen +5 位作者 Feifei Xue Hao Qiu Ning Yang Yuwen Zhang Chaoyu Wang Edwin E.Nyakilla 《Energy Engineering》 EI 2025年第1期285-306,共22页
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe... Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems. 展开更多
关键词 Electric-thermal hybrid storage modal decomposition multi-objective genetic algorithm capacity optimization allocation operation strategy
在线阅读 下载PDF
Multi-Stage Voltage Control Optimization Strategy for Distribution Networks Considering Active-Reactive Co-Regulation of Electric Vehicles
12
作者 Shukang Lyu Fei Zeng +3 位作者 Huachun Han Huiyu Miao Yi Pan Xiaodong Yuan 《Energy Engineering》 EI 2025年第1期221-242,共22页
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis... The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network. 展开更多
关键词 Electric vehicle(EV) distribution network multi-stage optimization active-reactive power regulation voltage control
在线阅读 下载PDF
Electrode/Electrolyte Optimization‑Induced Double‑Layered Architecture for High‑Performance Aqueous Zinc‑(Dual)Halogen Batteries
13
作者 Chengwang Zhou Zhezheng Ding +7 位作者 Shengzhe Ying Hao Jiang Yan Wang Timing Fang You Zhang Bing Sun Xiao Tang Xiaomin Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期121-137,共17页
Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growt... Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries. 展开更多
关键词 Zn metal anodes Double-layered protective film Electrode/electrolyte optimization Aqueous zinc-(dual)halogen batteries
在线阅读 下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
14
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
在线阅读 下载PDF
Estimating Optimal Location of STATCOM and Minimization of Congestion Cost by Locational Marginal Price Using Flower Pollination and Particle Swarm Optimization Techniques
15
作者 Gagandeep Kaur Akhil Gupta 《Journal of Harbin Institute of Technology(New Series)》 2025年第1期67-75,共9页
Restructuring of power market not only introduces competition but also brings complexity which increases overloading of Transmission Lines(TL).To obviate this complexity,this paper aims to mitigate the overloading and... Restructuring of power market not only introduces competition but also brings complexity which increases overloading of Transmission Lines(TL).To obviate this complexity,this paper aims to mitigate the overloading and estimate the optimal location of Static Synchronous Compensator(STATCOM) by reducing congestion for a deregulated power system.The proposed method is based on the use of Locational Marginal Price(LMP) difference technique and congestion cost.LMPs are obtained as a by-product of Optimal Power Flow(OPF),whereas Congestion Cost(CC) is a function of difference in LMP and power flows.The effiectiveness of this approach is demonstrated by reducing the CC and solution space which can identify the TLs more suitable for placement of STATCOM.Importantly,total real power loss,reactive power loss and total CC are the three main objective functions in this optimization process.The process is implemented by developing an IEEE-69 bus test system which verifies and validates the effectiveness of proposed optimization technique.Additionally,a comparative analysis is enumerated by implementing two optimization techniques:Flower Pollination Algorithm(FPA) and Particle Swarm Optimization(PSO).The comparative analysis is sufficient to demonstrate the superiority of FPA technique over PSO technique in estimating an optimal placement of a STATCOM.The results from the load-flow analysis illustrate the reduction in CC,total real and reactive power loss using FPA technique compared to PSO technique.Overall,satisfactory results are obtained without using complex calculations which verify the effectiveness of optimization techniques. 展开更多
关键词 congestion management congestion cost optimal power particle swarm flower pollination optimization
在线阅读 下载PDF
Optimization of Nesting Systems in Shipbuilding:A Review
16
作者 Sari Wanda Rulita Gunawan Muzhoffar Dimas Angga Fakhri 《哈尔滨工程大学学报(英文版)》 2025年第1期152-175,共24页
This review article provides a comprehensive analysis of nesting optimization algorithms in the shipbuilding industry,emphasizing their role in improving material utilization,minimizing waste,and enhancing production ... This review article provides a comprehensive analysis of nesting optimization algorithms in the shipbuilding industry,emphasizing their role in improving material utilization,minimizing waste,and enhancing production efficiency.The shipbuilding process involves the complex cutting and arrangement of steel plates,making the optimization of these operations vital for cost-effectiveness and sustainability.Nesting algorithms are broadly classified into four categories:exact,heuristic,metaheuristic,and hybrid.Exact algorithms ensure optimal solutions but are computationally demanding.In contrast,heuristic algorithms deliver quicker results using practical rules,although they may not consistently achieve optimal outcomes.Metaheuristic algorithms combine multiple heuristics to effectively explore solution spaces,striking a balance between solution quality and computational efficiency.Hybrid algorithms integrate the strengths of different approaches to further enhance performance.This review systematically assesses these algorithms using criteria such as material dimensions,part geometry,component layout,and computational efficiency.The findings highlight the significant potential of advanced nesting techniques to improve material utilization,reduce production costs,and promote sustainable practices in shipbuilding.By adopting suitable nesting solutions,shipbuilders can achieve greater efficiency,optimized resource management,and superior overall performance.Future research directions should focus on integrating machine learning and real-time adaptability to further enhance nesting algorithms,paving the way for smarter,more sustainable manufacturing practices in the shipbuilding industry. 展开更多
关键词 Cutting plate Nesting algorithms Nesting optimization Shipbuilding efficiency Algorithmic optimization
在线阅读 下载PDF
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
17
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 Multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
在线阅读 下载PDF
Trajectory optimization for UAV-enabled relaying with reinforcement learning
18
作者 Chiya Zhang Xinjie Li +2 位作者 Chunlong He Xingquan Li Dongping Lin 《Digital Communications and Networks》 2025年第1期200-209,共10页
In this paper,we investigate the application of the Unmanned Aerial Vehicle(UAV)-enabled relaying system in emergency communications,where one UAV is applied as a relay to help transmit information from ground users t... In this paper,we investigate the application of the Unmanned Aerial Vehicle(UAV)-enabled relaying system in emergency communications,where one UAV is applied as a relay to help transmit information from ground users to a Base Station(BS).We maximize the total transmitted data from the users to the BS,by optimizing the user communication scheduling and association along with the power allocation and the trajectory of the UAV.To solve this non-convex optimization problem,we propose the traditional Convex Optimization(CO)and the Reinforcement Learning(RL)-based approaches.Specifically,we apply the block coordinate descent and successive convex approximation techniques in the CO approach,while applying the soft actor-critic algorithm in the RL approach.The simulation results show that both approaches can solve the proposed optimization problem and obtain good results.Moreover,the RL approach establishes emergency communications more rapidly than the CO approach once the training process has been completed. 展开更多
关键词 Unmanned aerial vehicle Emergency communications Trajectory optimization Convex optimization Reinforcement learning
在线阅读 下载PDF
Multi-Strategy Improved Secretary Bird Optimization Algorithm
19
作者 Fengkai Wang Bo Wang 《Journal of Computer and Communications》 2025年第1期90-107,共18页
This paper addresses the shortcomings of the Sparrow and Eagle Optimization Algorithm (SBOA) in terms of convergence accuracy, convergence speed, and susceptibility to local optima. To this end, an improved Sparrow an... This paper addresses the shortcomings of the Sparrow and Eagle Optimization Algorithm (SBOA) in terms of convergence accuracy, convergence speed, and susceptibility to local optima. To this end, an improved Sparrow and Eagle Optimization Algorithm (HS-SBOA) is proposed. Initially, the algorithm employs Iterative Mapping to generate an initial sparrow and eagle population, enhancing the diversity of the population during the global search phase. Subsequently, an adaptive weighting strategy is introduced during the exploration phase of the algorithm to achieve a balance between exploration and exploitation. Finally, to avoid the algorithm falling into local optima, a Cauchy mutation operation is applied to the current best individual. To validate the performance of the HS-SBOA algorithm, it was applied to the CEC2021 benchmark function set and three practical engineering problems, and compared with other optimization algorithms such as the Grey Wolf Optimization (GWO), Particle Swarm Optimization (PSO), and Whale Optimization Algorithm (WOA) to test the effectiveness of the improved algorithm. The simulation experimental results show that the HS-SBOA algorithm demonstrates significant advantages in terms of convergence speed and accuracy, thereby validating the effectiveness of its improved strategies. 展开更多
关键词 Secretary Bird optimization Algorithm Iterative Mapping Adaptive Weight Strategy Cauchy Variation Convergence Speed
在线阅读 下载PDF
Research on the Performance Optimization of a Hydraulic PTO System for a“Dolphin 1”Oscillating-Body Wave Energy Converter
20
作者 LAI Wen-bin LI Jia-long +2 位作者 RONG Si-zhang YANG Hong-kun ZHENG Xiong-bo 《China Ocean Engineering》 2025年第1期166-178,共13页
In this work,an oscillating-body wave energy converter(OBWEC)with a hydraulic power take-off(PTO)system named“Dolphin 1”is designed,in which the hydraulic PTO system is equivalent to a transfer station and plays a c... In this work,an oscillating-body wave energy converter(OBWEC)with a hydraulic power take-off(PTO)system named“Dolphin 1”is designed,in which the hydraulic PTO system is equivalent to a transfer station and plays a crucial role in ensuring the stability of the electrical energy output and the efficiency of the overall system.A corresponding mathematical model for the hydraulic PTO system has been established,the factors that influence its performance have been studied,and an algorithm for solving the optimal working pressure has been derived in this paper.Moreover,a PID control method to enable the hydraulic PTO system to automatically achieve optimal performance under different wave conditions has been designed.The results indicate that,compared with single-chamber hydraulic cylinders,double-chamber hydraulic cylinders have a wider application range and greater performance;the accumulator can stabilize the output power of the hydraulic PTO system and slightly increase it;excessively large or small hydraulic motor displacement hinders system performance;and each wave condition corresponds to a unique optimal working pressure for the hydraulic PTO system.In addition,the relationship between the optimal working pressure P_(m)and the pressure P_(h)of the wave force acting on the piston satisfies P_(m)^(2)=∫_(t_(1))^(t_(2))P_(h)^(2)dt/(t_(2)-t_(1)).Furthermore,adjusting the hydraulic motor displacement automatically via a PID controller ensures that the actual working pressure of the hydraulic PTO system consistently reaches or approaches its theoretically optimal value under various wave conditions,which is a very effective control method for enhancing the performance of the hydraulic PTO system. 展开更多
关键词 hydraulic PTO system performance optimization wave energy converter optimal working pressure PID control
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部