In this paper, it is considered that the global existence, uniqueness and regularity results for the Cauchy problem of the well-known Kuramoto-Sivashinsky equation [GRAPHICS] only under the condition u(0)(x) is an ele...In this paper, it is considered that the global existence, uniqueness and regularity results for the Cauchy problem of the well-known Kuramoto-Sivashinsky equation [GRAPHICS] only under the condition u(0)(x) is an element of L-2(R-N, R-n). Where u(t, x) = (u(1)(t, x), ..., u(n)(t, x))(T) is the unknown vector-valued function. Results show that for N < 6,.u(0)(x) is an element of L-2(R-N, R-n), the above Cauchy problem admits a unique global solution u(t, x) which belongs to C-infinity,C-infinity(R-N x (0, infinity)).展开更多
We study the existence problem for the equations of first order quasilinearequations in several inpendent variables with singular initial data Lp(P<∞). We the convergence of the Lp(P<∞) bounded approximating s...We study the existence problem for the equations of first order quasilinearequations in several inpendent variables with singular initial data Lp(P<∞). We the convergence of the Lp(P<∞) bounded approximating sequences generatedby the method of vanishing viscosity. The uniqueness of the generalized solutions whichcan be obtained by the method of vanishing viscosity is also obtained.展开更多
We consider nonlinear parabolic equations with nonlinear non-Lipschitz's term and singular initial data like Dirac measure, its derivatives and powers. We prove existence-uniqueness theorems in Colombeau vector space...We consider nonlinear parabolic equations with nonlinear non-Lipschitz's term and singular initial data like Dirac measure, its derivatives and powers. We prove existence-uniqueness theorems in Colombeau vector space yC^1,W^2,2([0,T),R^n),n ≤ 3. Due to high singularity in a case of parabolic equation with nonlinear conservative term we employ the regularized derivative for the conservative term, in order to obtain the global existence-uniqueness result in Colombeau vector space yC^1,L^2([0,T),R^n),n≤ 3.展开更多
文摘In this paper, it is considered that the global existence, uniqueness and regularity results for the Cauchy problem of the well-known Kuramoto-Sivashinsky equation [GRAPHICS] only under the condition u(0)(x) is an element of L-2(R-N, R-n). Where u(t, x) = (u(1)(t, x), ..., u(n)(t, x))(T) is the unknown vector-valued function. Results show that for N < 6,.u(0)(x) is an element of L-2(R-N, R-n), the above Cauchy problem admits a unique global solution u(t, x) which belongs to C-infinity,C-infinity(R-N x (0, infinity)).
文摘We study the existence problem for the equations of first order quasilinearequations in several inpendent variables with singular initial data Lp(P<∞). We the convergence of the Lp(P<∞) bounded approximating sequences generatedby the method of vanishing viscosity. The uniqueness of the generalized solutions whichcan be obtained by the method of vanishing viscosity is also obtained.
基金Supported by Ministry of Science of Republic Serbia
文摘We consider nonlinear parabolic equations with nonlinear non-Lipschitz's term and singular initial data like Dirac measure, its derivatives and powers. We prove existence-uniqueness theorems in Colombeau vector space yC^1,W^2,2([0,T),R^n),n ≤ 3. Due to high singularity in a case of parabolic equation with nonlinear conservative term we employ the regularized derivative for the conservative term, in order to obtain the global existence-uniqueness result in Colombeau vector space yC^1,L^2([0,T),R^n),n≤ 3.