Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for pati...Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury;however,the underlying pathogenesis remains unclear,and effective intervention methods are lacking.Intestinal dysfunction is a significant consequence of traumatic brain injury.Being the most densely innervated peripheral tissue in the body,the gut possesses multiple pathways for the establishment of a bidirectional“brain-gut axis”with the central nervous system.The gut harbors a vast microbial community,and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal,hormonal,and immune pathways.A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications.We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury,with a specific focus on the complex biological processes of peripheral nerves,immunity,and microbes triggered by traumatic brain injury,encompassing autonomic dysfunction,neuroendocrine disturbances,peripheral immunosuppression,increased intestinal barrier permeability,compromised responses of sensory nerves to microorganisms,and potential effector nuclei in the central nervous system influenced by gut microbiota.Additionally,we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury.This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the“brain-gut-microbiota axis.”展开更多
Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhance...Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhanced networkmanagement capabilities than those of traditional networks.However,because SDN is designed to ensure high-level service availability,it faces additional challenges.One of themost critical challenges is ensuring efficient detection and recovery from link failures in the data plane.Such failures can significantly impact network performance and lead to service outages,making resiliency a key concern for the effective adoption of SDN.Since the recovery process is intrinsically dependent on timely failure detection,this research surveys and analyzes the current literature on both failure detection and recovery approaches in SDN.The survey provides a critical comparison of existing failure detection techniques,highlighting their advantages and disadvantages.Additionally,it examines the current failure recovery methods,categorized as either restoration-based or protection-based,and offers a comprehensive comparison of their strengths and limitations.Lastly,future research challenges and directions are discussed to address the shortcomings of existing failure recovery methods.展开更多
A recent study by Wang et al,published in the World Journal of Psychiatry,provided preventative and therapeutic strategies for the comorbidity of obesity and depression.The gut-brain axis,which acts as a two-way commu...A recent study by Wang et al,published in the World Journal of Psychiatry,provided preventative and therapeutic strategies for the comorbidity of obesity and depression.The gut-brain axis,which acts as a two-way communication system between the gastrointestinal tract and the central nervous system,plays a pivotal role in the pathogenesis of these conditions.Evidence suggests that metabolic byproducts,such as short-chain fatty acids,lipopolysaccharide and bile acids,which are generated by the gut microbiota,along with neurotransmitters and inflammatory mediators within the gut-brain axis,modulate the host's metabolic processes,neuronal regulation,and immune responses through diverse mechanisms.The interaction between obesity and depression via the gut-brain axis involves disruptions in the gut microbiota balance,inflammatory immune responses,and alterations in the neuroendocrine system.Modulating the gut-brain axis,for example,through a ketogenic diet,the use of probiotics,and the supplementation of antioxidants,offers new remedial approaches for obesity and depression.Future research that explores the mechanisms of the gut-brain axis is needed to provide more evidence for clinical treatment.展开更多
Software-related security aspects are a growing and legitimate concern,especially with 5G data available just at our palms.To conduct research in this field,periodic comparative analysis is needed with the new techniq...Software-related security aspects are a growing and legitimate concern,especially with 5G data available just at our palms.To conduct research in this field,periodic comparative analysis is needed with the new techniques coming up rapidly.The purpose of this study is to review the recent developments in the field of security integration in the software development lifecycle(SDLC)by analyzing the articles published in the last two decades and to propose a way forward.This review follows Kitchenham’s review protocol.The review has been divided into three main stages including planning,execution,and analysis.From the selected 100 articles,it becomes evident that need of a collaborative approach is necessary for addressing critical software security risks(CSSRs)through effective risk management/estimation techniques.Quantifying risks using a numeric scale enables a comprehensive understanding of their severity,facilitating focused resource allocation and mitigation efforts.Through a comprehensive understanding of potential vulnerabilities and proactive mitigation efforts facilitated by protection poker,organizations can prioritize resources effectively to ensure the successful outcome of projects and initiatives in today’s dynamic threat landscape.The review reveals that threat analysis and security testing are needed to develop automated tools for the future.Accurate estimation of effort required to prioritize potential security risks is a big challenge in software security.The accuracy of effort estimation can be further improved by exploring new techniques,particularly those involving deep learning.It is also imperative to validate these effort estimation methods to ensure all potential security threats are addressed.Another challenge is selecting the right model for each specific security threat.To achieve a comprehensive evaluation,researchers should use well-known benchmark checklists.展开更多
Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive s...Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive schemes have longer recovery times while proactive schemes provide faster recovery but overwhelm the memory of switches by flow entries.As SDN adoption grows,ensuring efficient recovery from link failures in the data plane becomes crucial.In particular,data center networks(DCNs)demand rapid recovery times and efficient resource utilization to meet carrier-grade requirements.This paper proposes an efficient Decentralized Failure Recovery(DFR)model for SDNs,meeting recovery time requirements and optimizing switch memory resource consumption.The DFR model enables switches to autonomously reroute traffic upon link failures without involving the controller,achieving fast recovery times while minimizing memory usage.DFR employs the Fast Failover Group in the OpenFlow standard for local recovery without requiring controller communication and utilizes the k-shortest path algorithm to proactively install backup paths,allowing immediate local recovery without controller intervention and enhancing overall network stability and scalability.DFR employs flow entry aggregation techniques to reduce switch memory usage.Instead of matching flow entries to the destination host’s MAC address,DFR matches packets to the destination switch’s MAC address.This reduces the switches’Ternary Content-Addressable Memory(TCAM)consumption.Additionally,DFR modifies Address Resolution Protocol(ARP)replies to provide source hosts with the destination switch’s MAC address,facilitating flow entry aggregation without affecting normal network operations.The performance of DFR is evaluated through the network emulator Mininet 2.3.1 and Ryu 3.1 as SDN controller.For different number of active flows,number of hosts per edge switch,and different network sizes,the proposed model outperformed various failure recovery models:restoration-based,protection by flow entries,protection by group entries and protection by Vlan-tagging model in terms of recovery time,switch memory consumption and controller overhead which represented the number of flow entry updates to recover from the failure.Experimental results demonstrate that DFR achieves recovery times under 20 milliseconds,satisfying carrier-grade requirements for rapid failure recovery.Additionally,DFR reduces switch memory usage by up to 95%compared to traditional protection methods and minimizes controller load by eliminating the need for controller intervention during failure recovery.Theresults underscore the efficiency and scalability of the DFR model,making it a practical solution for enhancing network resilience in SDN environments.展开更多
Age-related macular degeneration is a serious neurodegenerative disease of the retina that significantly impacts vision.Unfortunately,the specific pathogenesis remains unclear,and effective early treatment options are...Age-related macular degeneration is a serious neurodegenerative disease of the retina that significantly impacts vision.Unfortunately,the specific pathogenesis remains unclear,and effective early treatment options are consequently lacking.The microbiome is defined as a large ecosystem of microorganisms living within and coexisting with a host.The intestinal microbiome undergoes dynamic changes owing to age,diet,genetics,and other factors.Such dysregulation of the intestinal flora can disrupt the microecological balance,resulting in immunological and metabolic dysfunction in the host,and affecting the development of many diseases.In recent decades,significant evidence has indicated that the intestinal flora also influences systems outside of the digestive tract,including the brain.Indeed,several studies have demonstrated the critical role of the gut-brain axis in the development of brain neurodegenerative diseases,including Alzheimer’s disease and Parkinson’s disease.Similarly,the role of the“gut-eye axis”has been confirmed to play a role in the pathogenesis of many ocular disorders.Moreover,age-related macular degeneration and many brain neurodegenerative diseases have been shown to share several risk factors and to exhibit comparable etiologies.As such,the intestinal flora may play an important role in age-related macular degeneration.Given the above context,the present review aims to clarify the gut-brain and gut-eye connections,assess the effect of intestinal flora and metabolites on age-related macular degeneration,and identify potential diagnostic markers and therapeutic strategies.Currently,direct research on the role of intestinal flora in age-related macular degeneration is still relatively limited,while studies focusing solely on intestinal flora are insufficient to fully elucidate its functional role in age-related macular degeneration.Organ-on-a-chip technology has shown promise in clarifying the gut-eye interactions,while integrating analysis of the intestinal flora with research on metabolites through metabolomics and other techniques is crucial for understanding their potential mechanisms.展开更多
With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterati...With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.展开更多
The advent of large language models(LLMs)has made knowledge acquisition and content creation increasingly easier and cheaper,which in turn redefines learning and urges transformation in software engineering education....The advent of large language models(LLMs)has made knowledge acquisition and content creation increasingly easier and cheaper,which in turn redefines learning and urges transformation in software engineering education.To do so,there is a need to understand the impact of LLMs on software engineering education.In this paper,we conducted a preliminary case study on three software requirements engineering classes where students are allowed to use LLMs to assist in their projects.Based on the students’experience,performance,and feedback from a survey conducted at the end of the courses,we characterized the challenges and benefits of applying LLMs in software engineering education.This research contributes to the ongoing discourse on the integration of LLMs in education,emphasizing both their prominent potential and the need for balanced,mindful usage.展开更多
This paper presents our endeavors in developing the large-scale, ultra-high-resolution E3SM Land Model (uELM), specifically designed for exascale computers furnished with accelerators such as Nvidia GPUs. The uELM is ...This paper presents our endeavors in developing the large-scale, ultra-high-resolution E3SM Land Model (uELM), specifically designed for exascale computers furnished with accelerators such as Nvidia GPUs. The uELM is a sophisticated code that substantially relies on High-Performance Computing (HPC) environments, necessitating particular machine and software configurations. To facilitate community-based uELM developments employing GPUs, we have created a portable, standalone software environment preconfigured with uELM input datasets, simulation cases, and source code. This environment, utilizing Docker, encompasses all essential code, libraries, and system software for uELM development on GPUs. It also features a functional unit test framework and an offline model testbed for comprehensive numerical experiments. From a technical perspective, the paper discusses GPU-ready container generations, uELM code management, and input data distribution across computational platforms. Lastly, the paper demonstrates the use of environment for functional unit testing, end-to-end simulation on CPUs and GPUs, and collaborative code development.展开更多
This article examines the architecture of software-defined networks (SDN) and its implications for the modern management of communications infrastructures. By decoupling the control plane from the data plane, SDN offe...This article examines the architecture of software-defined networks (SDN) and its implications for the modern management of communications infrastructures. By decoupling the control plane from the data plane, SDN offers increased flexibility and programmability, enabling rapid adaptation to changing user requirements. However, this new approach poses significant challenges in terms of security, fault tolerance, and interoperability. This paper highlights these challenges and explores current strategies to ensure the resilience and reliability of SDN networks in the face of threats and failures. In addition, we analyze the future outlook for SDN and the importance of integrating robust security solutions into these infrastructures.展开更多
To address the severe challenges posed by the international situation and meet the needs of the national major development strategies,the traditional software engineering talent cultivation model lacks interdisciplina...To address the severe challenges posed by the international situation and meet the needs of the national major development strategies,the traditional software engineering talent cultivation model lacks interdisciplinary education focused on specific fields,making it difficult to cultivate engineering leaders with multidisciplinary backgrounds who are capable of solving complex real-world problems.To solve this problem,based on the decade-long interdisciplinary talent cultivation achievements of the College of Software Engineering at Sichuan University,this article proposes the“Software Engineering+”innovative talent cultivation paradigm.It provides an analysis through professional construction of interdisciplinary talents,the design of talent cultivation frameworks,the formulation of cultivation plans,the establishment of interdisciplinary curriculum systems,the reform of teaching modes,and the improvement of institutional systems.Scientific solutions are proposed,and five project models implemented and operated by the College of Software Engineering at Sichuan University are listed as practical examples,offering significant reference value.展开更多
High-fat diet(HFD)consumption induces gut microbiota dysbiosis and neuropsychiatric disorders,including anxiety.Previous research found that Tremella polysaccharide(TP)exhibited neuroprotective effects in vitro and in...High-fat diet(HFD)consumption induces gut microbiota dysbiosis and neuropsychiatric disorders,including anxiety.Previous research found that Tremella polysaccharide(TP)exhibited neuroprotective effects in vitro and in vivo.This study aimed to investigate the beneficial effects of TP on HFD-induced anxiety-like behaviors and elucidate the underlying mechanisms from the point view of the microbiota-gut-brain axis.Two groups of HFD-induced obese mice were orally gavaged with low dose(TPL,40 mg/kg)and high dose(TPH,400 mg/kg)of TP.A 12-week administration of TPH could significantly improve anxiety-like behaviors in HFD mice.In the hippocampus,microglia activation,the expression of blood-brain barrier(BBB)markers,and the levels of two neurotransmitters(serotonin and norepinephrine)were countered by TPH in mice consuming HFD.Furthermore,TPH improved the intestinal permeability and immune response of the enterocytes in HFD-fed mice.The gut microbiota dysbiosis induced by HFD was also rebalanced by TP treatments,especially in Proteobacteria and its lower taxa.The correlational analysis also suggested that shifts of some microbial genera were closely associated with body weight and the parameters of behavioral tests.Interestingly,fecal microbiota transplantation(FMT)results indicated that fecal microbiota from TPH-treated obese mice could prevent HFD-induced anxiety-like behaviors,suppressed microglia activation and intestinal permeability.In conclusion,the present study indicated that TP intake is a promising dietary intervention strategy to prevent HFD-induced anxiety via the microbiota-gut-brain axis.展开更多
With the rapid development of software engineering,traditional teaching methods are confronted with the challenges of short knowledge update cycles and the rapid emergence of new technologies.By analyzing the current ...With the rapid development of software engineering,traditional teaching methods are confronted with the challenges of short knowledge update cycles and the rapid emergence of new technologies.By analyzing the current situation of the mismatch between educational practices and industrial change,this study proposes an innovative teaching model—“Micro-practices”.This model integrates new knowledge and new technologies into the teaching process quickly and flexibly through practical teaching projects with“short class time,small capacity,and cloud environment”to meet the different educational needs of students,teachers,and enterprises.The aim is to train innovative software engineering talents who can meet the challenges of the future.展开更多
This paper presents a case study of the collaborative integration between the School of Information and Software Engineering at the University of Electronic Science and Technology of China(UESTC)and SI-TECH,highlighti...This paper presents a case study of the collaborative integration between the School of Information and Software Engineering at the University of Electronic Science and Technology of China(UESTC)and SI-TECH,highlighting the complementary advantages of both the University and the enterprise.By jointly establishing research institutes and engaging in diversified collaborative initiatives,the University and the enterprise have embarked on a pathway of School-enterprise Integration.Through a virtuous cycle of cooperation and continuous advancement,they have explored a comprehensive talent cultivation model in“5G”software engineering innovation practices based on this integration.Furthermore,this endeavor aims to facilitate the transformation of technological achievements and provides valuable insights for fostering innovative talents in the field of electronic information through enhanced integration between the University and the enterprise.展开更多
Building a collaborative education mechanism,improving students’engineering practice and innovation abilities,and cultivating software engineering innovation talents that meet industry needs are of great significance...Building a collaborative education mechanism,improving students’engineering practice and innovation abilities,and cultivating software engineering innovation talents that meet industry needs are of great significance for fully implementing the“Excellent Engineer Education and Training Program”of the Ministry of Education and achieving the goal of building a strong engineering education country.The School of Information and Software Engineering of the University of Electronic Science and Technology of China(UESTC)has been thoroughly studying and implementing XI Jinping’s thought on socialism with Chinese characteristics and the spirit of the 20th CPC National Congress.The school has steadfastly promoted the Project of Nurturing the Soul of the New Era.The school has taken moral education as its core,deeply explored the resources of“all staff,throughout the process,in all aspects”,and constructed and implemented the collaborative education mechanism.These efforts have laid a solid foundation for cultivating excellent talents in software engineering in the new era.展开更多
This paper proposes a multivariate data fusion based quality evaluation model for software talent cultivation.The model constructs a comprehensive ability and quality evaluation index system for college students from ...This paper proposes a multivariate data fusion based quality evaluation model for software talent cultivation.The model constructs a comprehensive ability and quality evaluation index system for college students from a perspective of engineering course,especially of software engineering.As for evaluation method,relying on the behavioral data of students during their school years,we aim to construct the evaluation model as objective as possible,effectively weakening the negative impact of personal subjective assumptions on the evaluation results.展开更多
Cholangiocarcinoma(CCA)is a particularly aggressive and challenging type of cancer,known for its poor prognosis,which is worsened by the complex interplay of various biological and environmental factors that contribut...Cholangiocarcinoma(CCA)is a particularly aggressive and challenging type of cancer,known for its poor prognosis,which is worsened by the complex interplay of various biological and environmental factors that contribute to its development.Recently,researchers have increasingly focused on the significant role of the biliary-enteric communication of liver-gut axis in the pathogenesis of CCA,highlighting a complex relationship that has not been thoroughly explored before.This review aims to summarize the key concepts related to the biliary-enteric communication of liver-gut axis and investigate its potential mechanisms that may lead to the onset and progression of CCA,a disease that presents substantial treatment challenges.Important areas of focus will include the microbiome's profound influence,which interacts with host physiology in ways that may worsen cancer development;changes in bile acid metabolism that can create toxic environments favorable for tumor growth;the regulation of inflammatory processes that may either promote or inhibit tumor progression;the immune system's involvement,which is crucial in the body's response to cancer;and the complex interactions within metabolic pathways that can affect cellular behavior and tumor dynamics.By integrating recent research findings from various studies,we aim to explore the multifaceted roles of the biliary-enteric communication of liver-gut axis in CCA,providing new insights and perspectives for future research while identifying promising therapeutic targets that could lead to innovative treatment strategies aimed at improving patient outcomes in this challenging disease.展开更多
Aflatoxin B_1(AFB_1)is a common contaminant in cereals of global concern,and long-term low-dose exposure can adversely affect human health.Here,we showed that populations with dietary patterns characterized by high-fa...Aflatoxin B_1(AFB_1)is a common contaminant in cereals of global concern,and long-term low-dose exposure can adversely affect human health.Here,we showed that populations with dietary patterns characterized by high-fat diet(HFD)might have an increased risk of exposure to high levels of AFB_1.Our data indicated that chronic exposure of AFB_1 induced“gut-liver axis”injury in mice under HFD and normal diet(ND)patterns.AFB_1 further aggravated hepatic and intestinal injury,and intestinal microbiota disruption in HFD mice.Bifidobacterium breve BAA-2849 intervention analysis showed that liver injury and lipid disorders caused by AFB_1 exposure were alleviated by regulating the proportions of different gut microbes.We demonstrated through a mice model that the populations with a dietary pattern of HFD might be more susceptible to AFB_1 exposure and adverse effects on the gut-liver axis,and the toxicity of AFB_1 exposure can be alleviated by regulating the gut microbiota.展开更多
In response to the current issues in the construction of software engineering(SE)degree granting program,such as insufficient resource integration,low level of internationalization,and inadequate quality control,we pr...In response to the current issues in the construction of software engineering(SE)degree granting program,such as insufficient resource integration,low level of internationalization,and inadequate quality control,we propose the Software Engineering Degree Granting Program Construction Practice Project at Harbin Institute of Technology(HIT).This project aims to explore new models for software talent cultivation,establish a superior SE degree granting program,and ultimately cultivate outstanding internationalized composite SE professionals to support the high-quality development of the national software industry.To this end,we design a distinctive overall construction idea and plan for the SE degree granting program,which are characterized by“3I3S:three highlights for specialized cultivation and strictness in three aspects to ensure quality control”.After years of practice and validation of the project at the School of Software at HIT,this project has proven effective in optimizing talent cultivation models,enhancing students’practical abilities,promoting international exchange and cooperation,advancing industry-education integration,and meeting industrial needs.展开更多
Under the background of training practical compound talents in software engineering,this paper analyzes the problems existing in the current teaching of software engineering courses represented by software project man...Under the background of training practical compound talents in software engineering,this paper analyzes the problems existing in the current teaching of software engineering courses represented by software project management,puts forward the team task mechanism of software engineering courses with AI empowerment and cooperation and competition,develops a unified project management platform to support the implementation of team tasks,and proves the effectiveness of the scheme through the results obtained.展开更多
基金supported by the National Natural Science Foundation of China,No.82174112(to PZ)Science and Technology Project of Haihe Laboratory of Modern Chinese Medicine,No.22HHZYSS00015(to PZ)State-Sponsored Postdoctoral Researcher Program,No.GZC20231925(to LN)。
文摘Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury;however,the underlying pathogenesis remains unclear,and effective intervention methods are lacking.Intestinal dysfunction is a significant consequence of traumatic brain injury.Being the most densely innervated peripheral tissue in the body,the gut possesses multiple pathways for the establishment of a bidirectional“brain-gut axis”with the central nervous system.The gut harbors a vast microbial community,and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal,hormonal,and immune pathways.A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications.We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury,with a specific focus on the complex biological processes of peripheral nerves,immunity,and microbes triggered by traumatic brain injury,encompassing autonomic dysfunction,neuroendocrine disturbances,peripheral immunosuppression,increased intestinal barrier permeability,compromised responses of sensory nerves to microorganisms,and potential effector nuclei in the central nervous system influenced by gut microbiota.Additionally,we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury.This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the“brain-gut-microbiota axis.”
文摘Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhanced networkmanagement capabilities than those of traditional networks.However,because SDN is designed to ensure high-level service availability,it faces additional challenges.One of themost critical challenges is ensuring efficient detection and recovery from link failures in the data plane.Such failures can significantly impact network performance and lead to service outages,making resiliency a key concern for the effective adoption of SDN.Since the recovery process is intrinsically dependent on timely failure detection,this research surveys and analyzes the current literature on both failure detection and recovery approaches in SDN.The survey provides a critical comparison of existing failure detection techniques,highlighting their advantages and disadvantages.Additionally,it examines the current failure recovery methods,categorized as either restoration-based or protection-based,and offers a comprehensive comparison of their strengths and limitations.Lastly,future research challenges and directions are discussed to address the shortcomings of existing failure recovery methods.
文摘A recent study by Wang et al,published in the World Journal of Psychiatry,provided preventative and therapeutic strategies for the comorbidity of obesity and depression.The gut-brain axis,which acts as a two-way communication system between the gastrointestinal tract and the central nervous system,plays a pivotal role in the pathogenesis of these conditions.Evidence suggests that metabolic byproducts,such as short-chain fatty acids,lipopolysaccharide and bile acids,which are generated by the gut microbiota,along with neurotransmitters and inflammatory mediators within the gut-brain axis,modulate the host's metabolic processes,neuronal regulation,and immune responses through diverse mechanisms.The interaction between obesity and depression via the gut-brain axis involves disruptions in the gut microbiota balance,inflammatory immune responses,and alterations in the neuroendocrine system.Modulating the gut-brain axis,for example,through a ketogenic diet,the use of probiotics,and the supplementation of antioxidants,offers new remedial approaches for obesity and depression.Future research that explores the mechanisms of the gut-brain axis is needed to provide more evidence for clinical treatment.
文摘Software-related security aspects are a growing and legitimate concern,especially with 5G data available just at our palms.To conduct research in this field,periodic comparative analysis is needed with the new techniques coming up rapidly.The purpose of this study is to review the recent developments in the field of security integration in the software development lifecycle(SDLC)by analyzing the articles published in the last two decades and to propose a way forward.This review follows Kitchenham’s review protocol.The review has been divided into three main stages including planning,execution,and analysis.From the selected 100 articles,it becomes evident that need of a collaborative approach is necessary for addressing critical software security risks(CSSRs)through effective risk management/estimation techniques.Quantifying risks using a numeric scale enables a comprehensive understanding of their severity,facilitating focused resource allocation and mitigation efforts.Through a comprehensive understanding of potential vulnerabilities and proactive mitigation efforts facilitated by protection poker,organizations can prioritize resources effectively to ensure the successful outcome of projects and initiatives in today’s dynamic threat landscape.The review reveals that threat analysis and security testing are needed to develop automated tools for the future.Accurate estimation of effort required to prioritize potential security risks is a big challenge in software security.The accuracy of effort estimation can be further improved by exploring new techniques,particularly those involving deep learning.It is also imperative to validate these effort estimation methods to ensure all potential security threats are addressed.Another challenge is selecting the right model for each specific security threat.To achieve a comprehensive evaluation,researchers should use well-known benchmark checklists.
文摘Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive schemes have longer recovery times while proactive schemes provide faster recovery but overwhelm the memory of switches by flow entries.As SDN adoption grows,ensuring efficient recovery from link failures in the data plane becomes crucial.In particular,data center networks(DCNs)demand rapid recovery times and efficient resource utilization to meet carrier-grade requirements.This paper proposes an efficient Decentralized Failure Recovery(DFR)model for SDNs,meeting recovery time requirements and optimizing switch memory resource consumption.The DFR model enables switches to autonomously reroute traffic upon link failures without involving the controller,achieving fast recovery times while minimizing memory usage.DFR employs the Fast Failover Group in the OpenFlow standard for local recovery without requiring controller communication and utilizes the k-shortest path algorithm to proactively install backup paths,allowing immediate local recovery without controller intervention and enhancing overall network stability and scalability.DFR employs flow entry aggregation techniques to reduce switch memory usage.Instead of matching flow entries to the destination host’s MAC address,DFR matches packets to the destination switch’s MAC address.This reduces the switches’Ternary Content-Addressable Memory(TCAM)consumption.Additionally,DFR modifies Address Resolution Protocol(ARP)replies to provide source hosts with the destination switch’s MAC address,facilitating flow entry aggregation without affecting normal network operations.The performance of DFR is evaluated through the network emulator Mininet 2.3.1 and Ryu 3.1 as SDN controller.For different number of active flows,number of hosts per edge switch,and different network sizes,the proposed model outperformed various failure recovery models:restoration-based,protection by flow entries,protection by group entries and protection by Vlan-tagging model in terms of recovery time,switch memory consumption and controller overhead which represented the number of flow entry updates to recover from the failure.Experimental results demonstrate that DFR achieves recovery times under 20 milliseconds,satisfying carrier-grade requirements for rapid failure recovery.Additionally,DFR reduces switch memory usage by up to 95%compared to traditional protection methods and minimizes controller load by eliminating the need for controller intervention during failure recovery.Theresults underscore the efficiency and scalability of the DFR model,making it a practical solution for enhancing network resilience in SDN environments.
基金supported by the National Natural Science Foundation of China,No.82171080Nanjing Medical Science and Technology Development Project,No.YKK23264Postgraduate Research&Practice Innovation Program of Jiangsu Province,Nos.JX10414151,JX10414152(all to KL)。
文摘Age-related macular degeneration is a serious neurodegenerative disease of the retina that significantly impacts vision.Unfortunately,the specific pathogenesis remains unclear,and effective early treatment options are consequently lacking.The microbiome is defined as a large ecosystem of microorganisms living within and coexisting with a host.The intestinal microbiome undergoes dynamic changes owing to age,diet,genetics,and other factors.Such dysregulation of the intestinal flora can disrupt the microecological balance,resulting in immunological and metabolic dysfunction in the host,and affecting the development of many diseases.In recent decades,significant evidence has indicated that the intestinal flora also influences systems outside of the digestive tract,including the brain.Indeed,several studies have demonstrated the critical role of the gut-brain axis in the development of brain neurodegenerative diseases,including Alzheimer’s disease and Parkinson’s disease.Similarly,the role of the“gut-eye axis”has been confirmed to play a role in the pathogenesis of many ocular disorders.Moreover,age-related macular degeneration and many brain neurodegenerative diseases have been shown to share several risk factors and to exhibit comparable etiologies.As such,the intestinal flora may play an important role in age-related macular degeneration.Given the above context,the present review aims to clarify the gut-brain and gut-eye connections,assess the effect of intestinal flora and metabolites on age-related macular degeneration,and identify potential diagnostic markers and therapeutic strategies.Currently,direct research on the role of intestinal flora in age-related macular degeneration is still relatively limited,while studies focusing solely on intestinal flora are insufficient to fully elucidate its functional role in age-related macular degeneration.Organ-on-a-chip technology has shown promise in clarifying the gut-eye interactions,while integrating analysis of the intestinal flora with research on metabolites through metabolomics and other techniques is crucial for understanding their potential mechanisms.
基金supported by the Haihe Laboratory of Cell Ecosystem Innovation Foundation,No.22HHXBSS00047(to PL)Graduate Science and Technology Innovation Project of Tianjin,No.2022BKY173(to LZ)Tianjin Municipal Science and Technology Bureau Foundation,No.20201194(to PL).
文摘With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.
基金supported in part by the Teaching Reform Project of Chongqing University of Posts and Telecommunications,China under Grant No.XJG23234Chongqing Municipal Higher Education Teaching Reform Research Project under Grant No.203399the Doctoral Direct Train Project of Chongqing Science and Technology Bureau under Grant No.CSTB2022BSXM-JSX0007。
文摘The advent of large language models(LLMs)has made knowledge acquisition and content creation increasingly easier and cheaper,which in turn redefines learning and urges transformation in software engineering education.To do so,there is a need to understand the impact of LLMs on software engineering education.In this paper,we conducted a preliminary case study on three software requirements engineering classes where students are allowed to use LLMs to assist in their projects.Based on the students’experience,performance,and feedback from a survey conducted at the end of the courses,we characterized the challenges and benefits of applying LLMs in software engineering education.This research contributes to the ongoing discourse on the integration of LLMs in education,emphasizing both their prominent potential and the need for balanced,mindful usage.
文摘This paper presents our endeavors in developing the large-scale, ultra-high-resolution E3SM Land Model (uELM), specifically designed for exascale computers furnished with accelerators such as Nvidia GPUs. The uELM is a sophisticated code that substantially relies on High-Performance Computing (HPC) environments, necessitating particular machine and software configurations. To facilitate community-based uELM developments employing GPUs, we have created a portable, standalone software environment preconfigured with uELM input datasets, simulation cases, and source code. This environment, utilizing Docker, encompasses all essential code, libraries, and system software for uELM development on GPUs. It also features a functional unit test framework and an offline model testbed for comprehensive numerical experiments. From a technical perspective, the paper discusses GPU-ready container generations, uELM code management, and input data distribution across computational platforms. Lastly, the paper demonstrates the use of environment for functional unit testing, end-to-end simulation on CPUs and GPUs, and collaborative code development.
文摘This article examines the architecture of software-defined networks (SDN) and its implications for the modern management of communications infrastructures. By decoupling the control plane from the data plane, SDN offers increased flexibility and programmability, enabling rapid adaptation to changing user requirements. However, this new approach poses significant challenges in terms of security, fault tolerance, and interoperability. This paper highlights these challenges and explores current strategies to ensure the resilience and reliability of SDN networks in the face of threats and failures. In addition, we analyze the future outlook for SDN and the importance of integrating robust security solutions into these infrastructures.
基金supported by the 2023 Sichuan Province Higher Education Talent Cultivation and Teaching Reform Major Project“Exploration and Practice of Interdisciplinary and Integrated Industrial Software Talent Cultivation Model”(JG2023-14)the Sichuan University Higher Education Teaching Reform Project(10th Phase)Research and Exploration of Practical Teaching Mode under the New Major Background of“Cross Disciplinary and Integration”(SCU10128)。
文摘To address the severe challenges posed by the international situation and meet the needs of the national major development strategies,the traditional software engineering talent cultivation model lacks interdisciplinary education focused on specific fields,making it difficult to cultivate engineering leaders with multidisciplinary backgrounds who are capable of solving complex real-world problems.To solve this problem,based on the decade-long interdisciplinary talent cultivation achievements of the College of Software Engineering at Sichuan University,this article proposes the“Software Engineering+”innovative talent cultivation paradigm.It provides an analysis through professional construction of interdisciplinary talents,the design of talent cultivation frameworks,the formulation of cultivation plans,the establishment of interdisciplinary curriculum systems,the reform of teaching modes,and the improvement of institutional systems.Scientific solutions are proposed,and five project models implemented and operated by the College of Software Engineering at Sichuan University are listed as practical examples,offering significant reference value.
基金supported by the Seed Fund of Research Institute of Future Food(1-CD54)。
文摘High-fat diet(HFD)consumption induces gut microbiota dysbiosis and neuropsychiatric disorders,including anxiety.Previous research found that Tremella polysaccharide(TP)exhibited neuroprotective effects in vitro and in vivo.This study aimed to investigate the beneficial effects of TP on HFD-induced anxiety-like behaviors and elucidate the underlying mechanisms from the point view of the microbiota-gut-brain axis.Two groups of HFD-induced obese mice were orally gavaged with low dose(TPL,40 mg/kg)and high dose(TPH,400 mg/kg)of TP.A 12-week administration of TPH could significantly improve anxiety-like behaviors in HFD mice.In the hippocampus,microglia activation,the expression of blood-brain barrier(BBB)markers,and the levels of two neurotransmitters(serotonin and norepinephrine)were countered by TPH in mice consuming HFD.Furthermore,TPH improved the intestinal permeability and immune response of the enterocytes in HFD-fed mice.The gut microbiota dysbiosis induced by HFD was also rebalanced by TP treatments,especially in Proteobacteria and its lower taxa.The correlational analysis also suggested that shifts of some microbial genera were closely associated with body weight and the parameters of behavioral tests.Interestingly,fecal microbiota transplantation(FMT)results indicated that fecal microbiota from TPH-treated obese mice could prevent HFD-induced anxiety-like behaviors,suppressed microglia activation and intestinal permeability.In conclusion,the present study indicated that TP intake is a promising dietary intervention strategy to prevent HFD-induced anxiety via the microbiota-gut-brain axis.
基金funded by Universityindustry Collaborative Education Program(No.220605181024725)the Undergraduate Education and Teaching Reform Research Project of Northwestern Polytechnical University(No.22GZ13083)。
文摘With the rapid development of software engineering,traditional teaching methods are confronted with the challenges of short knowledge update cycles and the rapid emergence of new technologies.By analyzing the current situation of the mismatch between educational practices and industrial change,this study proposes an innovative teaching model—“Micro-practices”.This model integrates new knowledge and new technologies into the teaching process quickly and flexibly through practical teaching projects with“short class time,small capacity,and cloud environment”to meet the different educational needs of students,teachers,and enterprises.The aim is to train innovative software engineering talents who can meet the challenges of the future.
文摘This paper presents a case study of the collaborative integration between the School of Information and Software Engineering at the University of Electronic Science and Technology of China(UESTC)and SI-TECH,highlighting the complementary advantages of both the University and the enterprise.By jointly establishing research institutes and engaging in diversified collaborative initiatives,the University and the enterprise have embarked on a pathway of School-enterprise Integration.Through a virtuous cycle of cooperation and continuous advancement,they have explored a comprehensive talent cultivation model in“5G”software engineering innovation practices based on this integration.Furthermore,this endeavor aims to facilitate the transformation of technological achievements and provides valuable insights for fostering innovative talents in the field of electronic information through enhanced integration between the University and the enterprise.
文摘Building a collaborative education mechanism,improving students’engineering practice and innovation abilities,and cultivating software engineering innovation talents that meet industry needs are of great significance for fully implementing the“Excellent Engineer Education and Training Program”of the Ministry of Education and achieving the goal of building a strong engineering education country.The School of Information and Software Engineering of the University of Electronic Science and Technology of China(UESTC)has been thoroughly studying and implementing XI Jinping’s thought on socialism with Chinese characteristics and the spirit of the 20th CPC National Congress.The school has steadfastly promoted the Project of Nurturing the Soul of the New Era.The school has taken moral education as its core,deeply explored the resources of“all staff,throughout the process,in all aspects”,and constructed and implemented the collaborative education mechanism.These efforts have laid a solid foundation for cultivating excellent talents in software engineering in the new era.
基金supported in part by the Education Reform Key Projects of Heilongjiang Province(Grant No.SJGZ20220011,SJGZ20220012)the Excellent Project of Ministry of Education and China Higher Education Association on Digital Ideological and Political Education in Universities(Grant No.GXSZSZJPXM001)。
文摘This paper proposes a multivariate data fusion based quality evaluation model for software talent cultivation.The model constructs a comprehensive ability and quality evaluation index system for college students from a perspective of engineering course,especially of software engineering.As for evaluation method,relying on the behavioral data of students during their school years,we aim to construct the evaluation model as objective as possible,effectively weakening the negative impact of personal subjective assumptions on the evaluation results.
文摘Cholangiocarcinoma(CCA)is a particularly aggressive and challenging type of cancer,known for its poor prognosis,which is worsened by the complex interplay of various biological and environmental factors that contribute to its development.Recently,researchers have increasingly focused on the significant role of the biliary-enteric communication of liver-gut axis in the pathogenesis of CCA,highlighting a complex relationship that has not been thoroughly explored before.This review aims to summarize the key concepts related to the biliary-enteric communication of liver-gut axis and investigate its potential mechanisms that may lead to the onset and progression of CCA,a disease that presents substantial treatment challenges.Important areas of focus will include the microbiome's profound influence,which interacts with host physiology in ways that may worsen cancer development;changes in bile acid metabolism that can create toxic environments favorable for tumor growth;the regulation of inflammatory processes that may either promote or inhibit tumor progression;the immune system's involvement,which is crucial in the body's response to cancer;and the complex interactions within metabolic pathways that can affect cellular behavior and tumor dynamics.By integrating recent research findings from various studies,we aim to explore the multifaceted roles of the biliary-enteric communication of liver-gut axis in CCA,providing new insights and perspectives for future research while identifying promising therapeutic targets that could lead to innovative treatment strategies aimed at improving patient outcomes in this challenging disease.
基金supported by grants from the National Natural Science Foundation of China(32125031)the Fundamental Research Funds for the Central Universities(JUSRP222001)Collaborative Innovation Center for Food Safety and Quality Control,China。
文摘Aflatoxin B_1(AFB_1)is a common contaminant in cereals of global concern,and long-term low-dose exposure can adversely affect human health.Here,we showed that populations with dietary patterns characterized by high-fat diet(HFD)might have an increased risk of exposure to high levels of AFB_1.Our data indicated that chronic exposure of AFB_1 induced“gut-liver axis”injury in mice under HFD and normal diet(ND)patterns.AFB_1 further aggravated hepatic and intestinal injury,and intestinal microbiota disruption in HFD mice.Bifidobacterium breve BAA-2849 intervention analysis showed that liver injury and lipid disorders caused by AFB_1 exposure were alleviated by regulating the proportions of different gut microbes.We demonstrated through a mice model that the populations with a dietary pattern of HFD might be more susceptible to AFB_1 exposure and adverse effects on the gut-liver axis,and the toxicity of AFB_1 exposure can be alleviated by regulating the gut microbiota.
基金supported in part by the Education Reform Key Projects of Heilongjiang Province under Grant Nos.SJGZ20220011,SJGZ20220012,and SJGZY2024008。
文摘In response to the current issues in the construction of software engineering(SE)degree granting program,such as insufficient resource integration,low level of internationalization,and inadequate quality control,we propose the Software Engineering Degree Granting Program Construction Practice Project at Harbin Institute of Technology(HIT).This project aims to explore new models for software talent cultivation,establish a superior SE degree granting program,and ultimately cultivate outstanding internationalized composite SE professionals to support the high-quality development of the national software industry.To this end,we design a distinctive overall construction idea and plan for the SE degree granting program,which are characterized by“3I3S:three highlights for specialized cultivation and strictness in three aspects to ensure quality control”.After years of practice and validation of the project at the School of Software at HIT,this project has proven effective in optimizing talent cultivation models,enhancing students’practical abilities,promoting international exchange and cooperation,advancing industry-education integration,and meeting industrial needs.
文摘Under the background of training practical compound talents in software engineering,this paper analyzes the problems existing in the current teaching of software engineering courses represented by software project management,puts forward the team task mechanism of software engineering courses with AI empowerment and cooperation and competition,develops a unified project management platform to support the implementation of team tasks,and proves the effectiveness of the scheme through the results obtained.