Least-squares reverse-time migration(LSRTM) formulates reverse-time migration(RTM) in the leastsquares inversion framework to obtain the optimal reflectivity image. It can generate images with more accurate amplitudes...Least-squares reverse-time migration(LSRTM) formulates reverse-time migration(RTM) in the leastsquares inversion framework to obtain the optimal reflectivity image. It can generate images with more accurate amplitudes, higher resolution, and fewer artifacts than RTM. However, three problems still exist:(1) inversion can be dominated by strong events in the residual;(2) low-wavenumber artifacts in the gradient affect convergence speed and imaging results;(3) high-wavenumber noise is also amplified as iteration increases. To solve these three problems, we have improved LSRTM: firstly, we use Hubernorm as the objective function to emphasize the weak reflectors during the inversion;secondly, we adapt the de-primary imaging condition to remove the low-wavenumber artifacts above strong reflectors as well as the false high-wavenumber reflectors in the gradient;thirdly, we apply the L1-norm sparse constraint in the curvelet-domain as the regularization term to suppress the high-wavenumber migration noise. As the new inversion objective function contains the non-smooth L1-norm, we use a modified iterative soft thresholding(IST) method to update along the Polak-Ribie re conjugate-gradient direction by using a preconditioned non-linear conjugate-gradient(PNCG) method. The numerical examples,especially the Sigsbee2 A model, demonstrate that the Huber inversion-based RTM can generate highquality images by mitigating migration artifacts and improving the contribution of weak reflection events.展开更多
The classical elastic impedance (EI) inversion method, however, is based on the L2-norm misfit function and considerably sensitive to outliers, assuming the noise of the seismic data to be the Guassian-distribution....The classical elastic impedance (EI) inversion method, however, is based on the L2-norm misfit function and considerably sensitive to outliers, assuming the noise of the seismic data to be the Guassian-distribution. So we have developed a more robust elastic impedance inversion based on the Ll-norm misfit function, and the noise is assumed to be non-Gaussian. Meanwhile, some regularization methods including the sparse constraint regularization and elastic impedance point constraint regularization are incorporated to improve the ill-posed characteristics of the seismic inversion problem. Firstly, we create the Ll-norm misfit objective function of pre-stack inversion problem based on the Bayesian scheme within the sparse constraint regularization and elastic impedance point constraint regularization. And then, we obtain more robust elastic impedances of different angles which are less sensitive to outliers in seismic data by using the IRLS strategy. Finally, we extract the P-wave and S-wave velocity and density by using the more stable parameter extraction method. Tests on synthetic data show that the P-wave and S-wave velocity and density parameters are still estimated reasonable with moderate noise. A test on the real data set shows that compared to the results of the classical elastic impedance inversion method, the estimated results using the proposed method can get better lateral continuity and more distinct show of the gas, verifying the feasibility and stability of the method.展开更多
The use of low-frequency seismic data improves the seismic resolution, and the imaging and inversion quality. Furthermore, low-frequency data are applied in hydrocarbon exploration; thus, we need to better use low-fre...The use of low-frequency seismic data improves the seismic resolution, and the imaging and inversion quality. Furthermore, low-frequency data are applied in hydrocarbon exploration; thus, we need to better use low-frequency data. In seismic wavelets, the loss of low-frequency data decreases the main lobe amplitude and increases the first side lobe amplitude and results in the periodic shocking attenuation of the secondary side lobe. The loss of low frequencies likely produces pseudo-events and the false appearance of higher resolution. We use models to examine the removal of low-frequency data in seismic data processing. The results suggest that the removal of low frequencies create distortions, especially for steep structures and thin layers. We also perform low-frequency expansion using compressed sensing and sparse constraints and develop the corresponding module. Finally, we apply the proposed method to real common image point gathers with good results.展开更多
In this paper,an inverse source problem for the time-fractional diffusion equation is investigated.The observational data is on the final time and the source term is assumed to be temporally independent and with a spa...In this paper,an inverse source problem for the time-fractional diffusion equation is investigated.The observational data is on the final time and the source term is assumed to be temporally independent and with a sparse structure.Here the sparsity is understood with respect to the pixel basis,i.e.,the source has a small support.By an elastic-net regularization method,this inverse source problem is formulated into an optimization problem and a semismooth Newton(SSN)algorithm is developed to solve it.A discretization strategy is applied in the numerical realization.Several one and two dimensional numerical examples illustrate the efficiency of the proposed method.展开更多
基金supported by National Key R&D Program of China (No. 2018YFA0702502)NSFC (Grant No. 41974142, 42074129, and 41674114)+1 种基金Science Foundation of China University of Petroleum (Beijing) (Grant No. 2462020YXZZ005)State Key Laboratory of Petroleum Resources and Prospecting (Grant No. PRP/indep-42012)。
文摘Least-squares reverse-time migration(LSRTM) formulates reverse-time migration(RTM) in the leastsquares inversion framework to obtain the optimal reflectivity image. It can generate images with more accurate amplitudes, higher resolution, and fewer artifacts than RTM. However, three problems still exist:(1) inversion can be dominated by strong events in the residual;(2) low-wavenumber artifacts in the gradient affect convergence speed and imaging results;(3) high-wavenumber noise is also amplified as iteration increases. To solve these three problems, we have improved LSRTM: firstly, we use Hubernorm as the objective function to emphasize the weak reflectors during the inversion;secondly, we adapt the de-primary imaging condition to remove the low-wavenumber artifacts above strong reflectors as well as the false high-wavenumber reflectors in the gradient;thirdly, we apply the L1-norm sparse constraint in the curvelet-domain as the regularization term to suppress the high-wavenumber migration noise. As the new inversion objective function contains the non-smooth L1-norm, we use a modified iterative soft thresholding(IST) method to update along the Polak-Ribie re conjugate-gradient direction by using a preconditioned non-linear conjugate-gradient(PNCG) method. The numerical examples,especially the Sigsbee2 A model, demonstrate that the Huber inversion-based RTM can generate highquality images by mitigating migration artifacts and improving the contribution of weak reflection events.
基金Projects(U1562215,41674130,41404088)supported by the National Natural Science Foundation of ChinaProjects(2013CB228604,2014CB239201)supported by the National Basic Research Program of China+1 种基金Projects(2016ZX05027004-001,2016ZX05002006-009)supported by the National Oil and Gas Major Projects of ChinaProject(15CX08002A)supported by the Fundamental Research Funds for the Central Universities,China
文摘The classical elastic impedance (EI) inversion method, however, is based on the L2-norm misfit function and considerably sensitive to outliers, assuming the noise of the seismic data to be the Guassian-distribution. So we have developed a more robust elastic impedance inversion based on the Ll-norm misfit function, and the noise is assumed to be non-Gaussian. Meanwhile, some regularization methods including the sparse constraint regularization and elastic impedance point constraint regularization are incorporated to improve the ill-posed characteristics of the seismic inversion problem. Firstly, we create the Ll-norm misfit objective function of pre-stack inversion problem based on the Bayesian scheme within the sparse constraint regularization and elastic impedance point constraint regularization. And then, we obtain more robust elastic impedances of different angles which are less sensitive to outliers in seismic data by using the IRLS strategy. Finally, we extract the P-wave and S-wave velocity and density by using the more stable parameter extraction method. Tests on synthetic data show that the P-wave and S-wave velocity and density parameters are still estimated reasonable with moderate noise. A test on the real data set shows that compared to the results of the classical elastic impedance inversion method, the estimated results using the proposed method can get better lateral continuity and more distinct show of the gas, verifying the feasibility and stability of the method.
基金supported by the National Science and Technology Major Project(No.2011ZX05051)Science and Technology Project of Shengli Oilfi eld(No.YKW1301)
文摘The use of low-frequency seismic data improves the seismic resolution, and the imaging and inversion quality. Furthermore, low-frequency data are applied in hydrocarbon exploration; thus, we need to better use low-frequency data. In seismic wavelets, the loss of low-frequency data decreases the main lobe amplitude and increases the first side lobe amplitude and results in the periodic shocking attenuation of the secondary side lobe. The loss of low frequencies likely produces pseudo-events and the false appearance of higher resolution. We use models to examine the removal of low-frequency data in seismic data processing. The results suggest that the removal of low frequencies create distortions, especially for steep structures and thin layers. We also perform low-frequency expansion using compressed sensing and sparse constraints and develop the corresponding module. Finally, we apply the proposed method to real common image point gathers with good results.
基金supported by National Science Foundation of China No.11171305 and No.91230203 and the work of X.Lu is partially supported by National Science Foundation of China No.11471253,the Fundamental Research Funds for the Central Universities(13lgzd07)and the PSTNS of Zhu Jiang in Guangzhou city(2011J2200099).
文摘In this paper,an inverse source problem for the time-fractional diffusion equation is investigated.The observational data is on the final time and the source term is assumed to be temporally independent and with a sparse structure.Here the sparsity is understood with respect to the pixel basis,i.e.,the source has a small support.By an elastic-net regularization method,this inverse source problem is formulated into an optimization problem and a semismooth Newton(SSN)algorithm is developed to solve it.A discretization strategy is applied in the numerical realization.Several one and two dimensional numerical examples illustrate the efficiency of the proposed method.