期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss
1
作者 Thanh-Lam Nguyen HaoKao +2 位作者 Thanh-Tuan Nguyen Mong-Fong Horng Chin-Shiuh Shieh 《Computers, Materials & Continua》 SCIE EI 2024年第2期2181-2205,共25页
Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications i... Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications in education,healthcare,entertainment,science,and more are being increasingly deployed based on the internet.Concurrently,malicious threats on the internet are on the rise as well.Distributed Denial of Service(DDoS)attacks are among the most common and dangerous threats on the internet today.The scale and complexity of DDoS attacks are constantly growing.Intrusion Detection Systems(IDS)have been deployed and have demonstrated their effectiveness in defense against those threats.In addition,the research of Machine Learning(ML)and Deep Learning(DL)in IDS has gained effective results and significant attention.However,one of the challenges when applying ML and DL techniques in intrusion detection is the identification of unknown attacks.These attacks,which are not encountered during the system’s training,can lead to misclassification with significant errors.In this research,we focused on addressing the issue of Unknown Attack Detection,combining two methods:Spatial Location Constraint Prototype Loss(SLCPL)and Fuzzy C-Means(FCM).With the proposed method,we achieved promising results compared to traditional methods.The proposed method demonstrates a very high accuracy of up to 99.8%with a low false positive rate for known attacks on the Intrusion Detection Evaluation Dataset(CICIDS2017)dataset.Particularly,the accuracy is also very high,reaching 99.7%,and the precision goes up to 99.9%for unknown DDoS attacks on the DDoS Evaluation Dataset(CICDDoS2019)dataset.The success of the proposed method is due to the combination of SLCPL,an advanced Open-Set Recognition(OSR)technique,and FCM,a traditional yet highly applicable clustering technique.This has yielded a novel method in the field of unknown attack detection.This further expands the trend of applying DL and ML techniques in the development of intrusion detection systems and cybersecurity.Finally,implementing the proposed method in real-world systems can enhance the security capabilities against increasingly complex threats on computer networks. 展开更多
关键词 CYBERSECURITY DDoS unknown attack detection machine learning deep learning incremental learning convolutional neural networks(CNN) open-set recognition(OSR) spatial location constraint prototype loss fuzzy c-means CICIDS2017 CICDDoS2019
在线阅读 下载PDF
Fuzzy c-means clustering based on spatial neighborhood information for image segmentation 被引量:15
2
作者 Yanling Li Yi Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期323-328,共6页
Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the im... Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the image. An improved FCM algorithm is proposed to improve the antinoise performance of FCM algorithm. The new algorithm is formulated by incorporating the spatial neighborhood information into the membership function for clustering. The distribution statistics of the neighborhood pixels and the prior probability are used to form a new membership func- tion. It is not only effective to remove the noise spots but also can reduce the misclassified pixels. Experimental results indicate that the proposed algorithm is more accurate and robust to noise than the standard FCM algorithm. 展开更多
关键词 image segmentation fuzzy c-means spatial informa- tion. robust.
在线阅读 下载PDF
Modification of Intensive Care Unit Data Using Analytical Hierarchy Process and Fuzzy C-Means Model
3
作者 Mohd Saifullah Rusiman Efendi Nasibov +1 位作者 Kavikumar Jacob Robiah Adnan 《Journal of Mathematics and System Science》 2012年第7期399-403,共5页
This paper proposes a proper methodology in data modification by using AHP (analytical hierarchy process) technique and FCM (fuzzy c-mean) model in the ICU (intensive care unit). The binary data were created fro... This paper proposes a proper methodology in data modification by using AHP (analytical hierarchy process) technique and FCM (fuzzy c-mean) model in the ICU (intensive care unit). The binary data were created from continuous data using FCM model, while the continuous data were constructed from binary data using AHP technique. The models used in this study are FCRM (fuzzy c-regression model). A case study in scale of health at the ICU ward using the AI-IP, FCM model and FCRM models was conducted. There are six independent variables in this study. There are four cases which are considered as the result of using AHP technique and FCM model against independent data. After comparing the four cases, it was found that case 4 appeared to be the best model, because it has the lowest MSE (mean square error) value. The original data have the MSE value of 97.33, while the data in case 4 have the MSE value of 82.75. This means that the use of AHP technique can reduce the MSE value, while the use of FCM model can not reduce the MSE value. In other words, it can be proved that the AHP technique can increase the accuracy of prediction in modeling scale of health which is associated with the mortality rate in the ICU. 展开更多
关键词 Analytical hierarchy process fuzzy c-means model fuzzy c-regression models mean square error.
在线阅读 下载PDF
Improved evidential fuzzy c-means method 被引量:4
4
作者 JIANG Wen YANG Tian +2 位作者 SHOU Yehang TANG Yongchuan HU Weiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期187-195,共9页
Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI s... Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation. 展开更多
关键词 average fusion spatial information Dempster-Shafer evidence theory(DS theory) fuzzy c-means(FCM) magnetic resonance imaging(MRI) image segmentation
在线阅读 下载PDF
Fuzzy C-Means Clustering Based Phonetic Tied-Mixture HMM in Speech Recognition 被引量:1
5
作者 徐向华 朱杰 郭强 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第1期16-20,共5页
A fuzzy clustering analysis based phonetic tied-mixture HMM(FPTM) was presented to decrease parameter size and improve robustness of parameter training. FPTM was synthesized from state-tied HMMs by a modified fuzzy C-... A fuzzy clustering analysis based phonetic tied-mixture HMM(FPTM) was presented to decrease parameter size and improve robustness of parameter training. FPTM was synthesized from state-tied HMMs by a modified fuzzy C-means clustering algorithm. Each Gaussian codebook of FPTM was built from Gaussian components within the same root node in phonetic decision tree. The experimental results on large vocabulary Mandarin speech recognition show that compared with conventional phonetic tied-mixture HMM and state-tied HMM with approximately the same number of Gaussian mixtures, FPTM achieves word error rate reductions by 4.84% and 13.02% respectively. Combining the two schemes of mixing weights pruning and Gaussian centers fuzzy merging, a significantly parameter size reduction was achieved with little impact on recognition accuracy. 展开更多
关键词 speech recognition hidden Markov model (HMM) fuzzy c-means (FCM) phonetic decision tree
在线阅读 下载PDF
Effectiveness of Fuzzy Overlay Function for Multi-Criteria Spatial Modeling—A Case Study on Preparation of Land Resources Map for Mawsynram Block of East Khasi Hills District of Meghalaya, India
6
作者 Priyanka Baidya Dibyajyoti Chutia +5 位作者 Singuluri Sudhakar Chandan Goswami Jonali Goswami Victor Saikhom Puyam S. Singh Kamini Kanta Sarma 《Journal of Geographic Information System》 2014年第6期605-612,共8页
Multi-criteria spatial modeling is one of the important components of spatial decision support system (SDSS). Multi-criteria spatial modeling often requires a common scale of values for diverse and dissimilar inputs t... Multi-criteria spatial modeling is one of the important components of spatial decision support system (SDSS). Multi-criteria spatial modeling often requires a common scale of values for diverse and dissimilar inputs to create an integrated analysis. Weighted overlay function is most commonly used for site suitability analysis which identifies the most preferred locations for a specific phenomenon. However, weighted overlay function gives inconsistent and erroneous results for highly dissimilar inputs as it assumes that most favorable factors result in the higher values of raster, while identifying the best sites. This paper conveys the effectiveness of fuzzy overlay function for multi-criteria spatial modeling. It is based on the principle of fuzzy logic theory which defines membership using Gaussian function on each of the input rasters instead of giving individual rank to them like in weighted overlay function. A case study on preparation of land resources map for Mawsynram block of East Khasi Hills district of Meghalaya, India is presented here. It was observed that fuzzy overlay function has given more satisfactory output in terms of site suitability while comparing with the result of weighted overlay function. 展开更多
关键词 MULTI-CRITERIA spatial modeling spatial Decision Support System (SDSS) Weighted OVERLAY fuzzy OVERLAY
在线阅读 下载PDF
GPS probe map matching algorithm based on spatial data model 被引量:1
7
作者 王卫 过秀成 侯佳 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期461-465,共5页
To improve the performance of the traditional map matching algorithms in freeway traffic state monitoring systems using the low logging frequency GPS (global positioning system) probe data, a map matching algorithm ... To improve the performance of the traditional map matching algorithms in freeway traffic state monitoring systems using the low logging frequency GPS (global positioning system) probe data, a map matching algorithm based on the Oracle spatial data model is proposed. The algorithm uses the Oracle road network data model to analyze the spatial relationships between massive GPS positioning points and freeway networks, builds an N-shortest path algorithm to find reasonable candidate routes between GPS positioning points efficiently, and uses the fuzzy logic inference system to determine the final matched traveling route. According to the implementation with field data from Los Angeles, the computation speed of the algorithm is about 135 GPS positioning points per second and the accuracy is 98.9%. The results demonstrate the effectiveness and accuracy of the proposed algorithm for mapping massive GPS positioning data onto freeway networks with complex geometric characteristics. 展开更多
关键词 GPS probe map matching A-star algorithm fuzzy logic Oracle spatial data model
在线阅读 下载PDF
Spatial Prediction of Heavy Metal Pollution for Soils in Peri-Urban Beijing, China Based on Fuzzy Set Theory 被引量:28
8
作者 TAN Man-Zhi XU Fang-Ming +2 位作者 CHEN Jie ZHANG Xue-Lei CHEN Jing-Zhong 《Pedosphere》 SCIE CAS CSCD 2006年第5期545-554,共10页
Fuzzy classification combined with spatial prediction was used to assess the state of soil pollution in the peri-urban Beijing area. Total concentrations of As, Cr, Cd, Hg, and Pb were determined in 220 topsoil sampl... Fuzzy classification combined with spatial prediction was used to assess the state of soil pollution in the peri-urban Beijing area. Total concentrations of As, Cr, Cd, Hg, and Pb were determined in 220 topsoil samples (0-20 cm) collected using a grid design in a study area of 2 600 kin2. Heavy metal concentrations were grouped into three classes according to the optimum number of classes and fuzziness exponent using the fuzzy comean (FCM) algorithm. Membership values were interpolated using ordinary kriging. The polluted soils of the study area induced by the measured heavy metals were concentrated in the northwest corner and eastern part, especially the southeastern part close to the urban zone, whereas the soils free of pollution were mainly distributed in the southwestern part. The soils with potential risk of heavy metal pollution were located in isolated spots mainly in the northern part and southeastern corner of the study region. The FCM algorithm combined with geostatistical techniques, as compared to conventional single geostatistical kriging methods, could produce a prediction with a quantitative uncertainty evaluation and higher reliability. Successful prediction of soil pollution achieved with FCM algorithm in this study indicated that fuzzy set theory had great potential for use in other areas of soil science. 展开更多
关键词 continuous classification fuzzy c-means heavy metal soil pollution spatial prediction
在线阅读 下载PDF
Research on Image Segmentation Algorithm based on Fuzzy C-mean Clustering
9
作者 Xiaona SONG Zuobing WANG 《International Journal of Technology Management》 2015年第2期28-30,共3页
This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the ... This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the search clustering center has small amount of calculation according to density, so it can greatly improve the calculation speed of fuzzy C- means algorithm. The experimental results show that, this method can make the fuzzy clustering to obviously improve the speed, so it can achieve fast image segmentation. 展开更多
关键词 Image segmentation fuzzy clustering fuzzy c-means spatial information ANTI-NOISE
在线阅读 下载PDF
基于陆海统筹视角的中国沿海地区人口、资源及环境要素空间匹配演化分析
10
作者 盖美 斯铁鑫 岳鹏 《海洋经济》 2025年第1期1-11,共11页
沿海地区人口、资源及环境要素空间匹配研究对陆海统筹整体功能有效发挥具有重要参考价值。本文基于可变模糊识别模型、重心模型、空间错位模型及多元线性回归模型等方法,探究2005-2019年中国沿海地区人口、资源及环境要素时空格局、空... 沿海地区人口、资源及环境要素空间匹配研究对陆海统筹整体功能有效发挥具有重要参考价值。本文基于可变模糊识别模型、重心模型、空间错位模型及多元线性回归模型等方法,探究2005-2019年中国沿海地区人口、资源及环境要素时空格局、空间匹配的演化及影响因素。结果表明:①2005-2019年沿海地区人口、资源及环境要素水平整体趋势向好,但各有起伏,且存在较大差异,通过重心模型发现沿海地区各要素重心变动较为明显,其中环境要素变化最为复杂。②从空间重叠性及一致性变化情况来看,要素变化整体趋势向好,但内部差异较大,存在不匹配问题,其中低错位地区为山东、浙江、辽宁、天津、河北;中错位地区为江苏、福建、广东、广西;较高错位地区为海南;高错位地区为上海。③通过对影响因素的分析,发现区位优势、对外开放、经济水平、产业结构、科技水平对沿海地区多要素匹配有正向显著影响,工程建设存在负面影响。本文研究结论对打开沿海地区发展新格局具有重要意义,为我国海洋强国建设提供理论依据。 展开更多
关键词 要素空间匹配 陆海统筹 人口、资源及环境 可变模糊识别模型 影响因素
在线阅读 下载PDF
甘肃省水资源承载力评价与分析--基于模糊综合评价法
11
作者 李沁峰 《绿色科技》 2025年第1期254-260,共7页
水资源承载力是反映在区域可持续发展前提下,可开发水量用以维持人口、社会经济发展的能力,是实现水资源安全管理的基础。本文结合层次分析法和熵权法构建了模糊综合评价模型,分析了2018年甘肃省水资源承载力状况。评价结果显示:甘肃省1... 水资源承载力是反映在区域可持续发展前提下,可开发水量用以维持人口、社会经济发展的能力,是实现水资源安全管理的基础。本文结合层次分析法和熵权法构建了模糊综合评价模型,分析了2018年甘肃省水资源承载力状况。评价结果显示:甘肃省14个市(州)均处于可承载或良好可承载状态。其中水资源子系统、社会子系统评分值区域差异明显,经济子系统整体状况较差,生态子系统总体状况较好。提出了应强化水资源管理,推动研发和推广先进的水资源管理技术,提高水资源利用效率,注重水土保持的建议,以进一步提高甘肃省水资源承载力,为区域可持续发展提供坚实的水资源保障。 展开更多
关键词 水资源承载力 模糊综合评价模型 综合赋权法 空间分异 甘肃省
在线阅读 下载PDF
Adaptive WNN aerodynamic modeling based on subset KPCA feature extraction 被引量:4
12
作者 孟月波 邹建华 +1 位作者 甘旭升 刘光辉 《Journal of Central South University》 SCIE EI CAS 2013年第4期931-941,共11页
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr... In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles. 展开更多
关键词 WAVELET neural network fuzzy c-means clustering kernel principal components analysis feature extraction aerodynamic modeling
在线阅读 下载PDF
Underwater Terrain Image Stitching Based on Spatial Gradient Feature Block 被引量:1
13
作者 Zhenzhou Wang Jiashuo Li +1 位作者 Xiang Wang Xuanhao Niu 《Computers, Materials & Continua》 SCIE EI 2022年第8期4157-4171,共15页
At present,underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system.However,the processed underwater terrain images have inconspicuous and few feature poi... At present,underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system.However,the processed underwater terrain images have inconspicuous and few feature points.In order to better realize the stitching of underwater terrain images and solve the problems of slow traditional image stitching speed,we proposed an improved algorithm for underwater terrain image stitching based on spatial gradient feature block.First,the spatial gradient fuzzy C-Means algorithm is used to divide the underwater terrain image into feature blocks with the fusion of spatial gradient information.The accelerated-KAZE(AKAZE)algorithm is used to combine the feature block information to match the reference image and the target image.Then,the random sample consensus(RANSAC)is applied to optimize the matching results.Finally,image fusion is performed with the global homography and the optimal seam-line method to improve the accuracy of image overlay fusion.The experimental results show that the proposed method in this paper effectively divides images into feature blocks by combining spatial information and gradient information,which not only solves the problem of stitching failure of underwater terrain images due to unobvious features,and further reduces the sensitivity to noise,but also effectively reduces the iterative calculation in the feature point matching process of the traditional method,and improves the stitching speed.Ghosting and shape warping are significantly eliminated by re-optimizing the overlap of the image. 展开更多
关键词 Underwater terrain images image stitching feature block fuzzy c-means spatial gradient information A-KAZE
在线阅读 下载PDF
Fuzzy identification of nonlinear dynamic system based on selection of important input variables 被引量:1
14
作者 LYU Jinfeng LIU Fucai REN Yaxue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期737-747,共11页
Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structur... Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling. 展开更多
关键词 Takagi-Sugeno(T-S)fuzzy modeling input variable selection(IVS) fuzzy identification fuzzy c-means clustering algorithm
在线阅读 下载PDF
Brain MRI Segmentation Using KFCM and Chan-Vese Model 被引量:1
15
作者 吴一全 侯雯 吴诗婳 《Transactions of Tianjin University》 EI CAS 2011年第3期215-219,共5页
To extract region of interests (ROI) in brain magnetic resonance imaging (MRI) with more than two objects and improve the segmentation accuracy, a hybrid model of a kemel-based fuzzy c-means (KFCM) clustering al... To extract region of interests (ROI) in brain magnetic resonance imaging (MRI) with more than two objects and improve the segmentation accuracy, a hybrid model of a kemel-based fuzzy c-means (KFCM) clustering algorithm and Chan-Vese (CV) model for brain MRI segmentation is proposed. The approach consists of two succes- sive stages. Firstly, the KFCM is used to make a coarse segmentation, which achieves the automatic selection of initial contour. Then an improved CV model is utilized to subdivide the image. Fuzzy membership degree from KFCM clus- tering is incorporated into the fidelity term of the 2-phase piecewise constant CV model to obtain accurate multi-object segmentation. Experimental results show that the proposed model has advantages both in accuracy and in robustness to noise in comparison with fuzzy c-means (FCM) clustering, KFCM, and the hybrid model of FCM and CV on brain MRI segmentation. 展开更多
关键词 brain magnetic resonance imaging image segmentation kernel-based fuzzy c-means clustering ChanVese model
在线阅读 下载PDF
Employment Quality EvaluationModel Based on Hybrid Intelligent Algorithm
16
作者 Xianhui Gu Xiaokan Wang Shuang Liang 《Computers, Materials & Continua》 SCIE EI 2023年第1期131-139,共9页
In order to solve the defect of large error in current employment quality evaluation,an employment quality evaluation model based on grey correlation degree method and fuzzy C-means(FCM)is proposed.Firstly,it analyzes... In order to solve the defect of large error in current employment quality evaluation,an employment quality evaluation model based on grey correlation degree method and fuzzy C-means(FCM)is proposed.Firstly,it analyzes the related research work of employment quality evaluation,establishes the employment quality evaluation index system,collects the index data,and normalizes the index data;Then,the weight value of employment quality evaluation index is determined by Grey relational analysis method,and some unimportant indexes are removed;Finally,the employment quality evaluation model is established by using fuzzy cluster analysis algorithm,and compared with other employment quality evaluation models.The test results show that the employment quality evaluation accuracy of the design model exceeds 93%,the employment quality evaluation error can meet the requirements of practical application,and the employment quality evaluation effect is much better than the comparison model.The comparison test verifies the superiority of the model. 展开更多
关键词 Employment quality fuzzy c-means clustering algorithm grey correlation analysis method evaluation model index system comparative test
在线阅读 下载PDF
基于水资源空间均衡的“四水四定”调控模型构建 被引量:9
17
作者 魏豪杉 王红瑞 +3 位作者 郏鹏鑫 周利超 李永坤 刘昌明 《水资源保护》 EI CAS CSCD 北大核心 2024年第3期71-77,共7页
为实现未来不同时间尺度下的水资源空间均衡与动态调控,创建了一套完整严谨、可动态调控的“四水四定”模型体系。通过模糊信息粒化窗口的支持向量机模型预测区域未来总用水量,利用基于时间序列相似性分析的自回归支持向量机模型预测区... 为实现未来不同时间尺度下的水资源空间均衡与动态调控,创建了一套完整严谨、可动态调控的“四水四定”模型体系。通过模糊信息粒化窗口的支持向量机模型预测区域未来总用水量,利用基于时间序列相似性分析的自回归支持向量机模型预测区域未来分用水量,并对两类数据进行不确定性分析;构建了复杂回归函数对各类用水指标进行情景预测,经统计检验后将其作为当前用水模式下未来用水指标;构建了“四水四定”水资源承载力模型和水资源空间均衡模型,基于未来总用水量、未来各分用水量、未来用水指标,选用水资源负载系数、用水效益和水土资源匹配系数3个指标,结合基尼系数量化水资源空间均衡度,分析当前用水模式下未来水资源均衡度;构建了最优化模型,以最小化基尼系数为目标函数调整未来用水模式,实现水资源动态调控。所创建的模型体系可以实现未来不同时间尺度下的水资源空间均衡与动态调控。 展开更多
关键词 “四水四定” 水资源空间均衡 水资源动态调控 时间序列相似性 支持向量机模型 模糊信息粒化窗口
在线阅读 下载PDF
基于统计和自适应ParNet的产学研绩效评价 被引量:1
18
作者 张睿 宋思琪 +2 位作者 胡静 张永梅 柴艳峰 《计算机应用》 CSCD 北大核心 2024年第2期628-637,共10页
针对现有产学研绩效评价体系及方法中存在的评价指标覆盖范围单一、评价样本特征表达不充分、评价模型自优化能力待提高的问题,提出主客观产学研综合绩效智能评价的评价体系及方法。首先,围绕三方合作主体,挖掘产学研合作过程中影响绩... 针对现有产学研绩效评价体系及方法中存在的评价指标覆盖范围单一、评价样本特征表达不充分、评价模型自优化能力待提高的问题,提出主客观产学研综合绩效智能评价的评价体系及方法。首先,围绕三方合作主体,挖掘产学研合作过程中影响绩效的要素及这些要素之间的联系,自主构建主客观产学研绩效三级评价体系;其次,通过将收集到的离散序列评价样本映射至极坐标空间、马尔可夫转移矩阵等不同高维空间域,增强离散样本特征表征;然后,通过基于精英反向翻筋斗觅食的混沌优化策略设计,提高深度模型冗余压缩和超参数的全局寻优效率,构建轻量压缩及高维超参数的自适应寻优的ParNet(AParNet)分类模型;最后,将模型应用于产学研绩效评价中,实现高性能的绩效智能评价。实验结果表明,所提方法很好地贴合了离散序列非线性分类应用,同时模型中加入优化策略后,在减少计算量的同时提高了分类性能,具体体现在:与ParNet相比,AParNet中的参数量减少了10.8%,较好地实现了模型的压缩,且它在产学研绩效评价中的分类准确率可达到98.6%。在产学研绩效智能评价应用中,该方法提高了评价模型的自适应能力,能够实现准确、高效的产学研绩效评价。 展开更多
关键词 产学研合作绩效评价 模糊统计 多空间域映射 卷积神经网络 模型自优化策略
在线阅读 下载PDF
全国森林火灾形势及其时空聚集性特征分析 被引量:1
19
作者 陈胤锋 马舒琪 +1 位作者 荆鹏 吕淑然 《安全》 2024年第5期79-84,共6页
为进一步研究全国森林火灾发生的时间规律与空间聚集性特征,基于全国2004—2022年度、2015—2021年月度的森林火灾发生次数及2017年31个省(自治区、直辖市)水文地理条件数据,利用Prophet时间序列模型与模糊聚类分析法对森林火灾特征进... 为进一步研究全国森林火灾发生的时间规律与空间聚集性特征,基于全国2004—2022年度、2015—2021年月度的森林火灾发生次数及2017年31个省(自治区、直辖市)水文地理条件数据,利用Prophet时间序列模型与模糊聚类分析法对森林火灾特征进行分析。结果表明:Prophet时间序列模型在森林火灾预测领域具有良好的适用性;时间规律方面,2004—2022年森林火灾次数呈先下降后上升再下降趋势,且季节因素影响突出,节假日影响因素不显著;空间聚集性方面,31个省(自治区、直辖市)可大致分为7个类别,其分类基本与地域特点有关。研究结果可为挖掘森林火灾时空分布及聚集性特征提供参考。 展开更多
关键词 森林火灾 公共安全 Prophet时间序列模型 模糊聚类模型 时空分布
在线阅读 下载PDF
Fuzzy C-means Rule Generation for Fuzzy Entry Temperature Prediction in a Hot Strip Mill 被引量:2
20
作者 Jose Angel BARRIOS Cesar VILLANUEVA +1 位作者 Alberto CAVAZOS Rafael COLAS 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第2期116-123,共8页
Variable estimation for finishing mill set-up in hot rolling is greatly affected by measurement uncertainties, variations in the incoming bar conditions and product changes. The fuzzy C-means algorithm was evaluated f... Variable estimation for finishing mill set-up in hot rolling is greatly affected by measurement uncertainties, variations in the incoming bar conditions and product changes. The fuzzy C-means algorithm was evaluated for rule base generation for fuzzy and fuzzy grey-box temperature estimation. Experimental data were collected from a real- life mill and three different sets were randomly drawn. The first set was used for rule-generation, the second set was used for training those systems with learning capabilities, while the third one was used for validation. The perform- ance of the developed systems was evaluated by five performance measures applied over the prediction error with the validation set and was compared with that of the empirical rule-base fuzzy systems and the physical model used in plant. The results show that the fuzzy C-means generated rule-bases improve temperature estimation; however, the best results are obtained when fuzzy C-means algorithm, grey-box modeling and learning functions are combined. Application of fuzzy C-means rule generation brings improvement on performance of up to 72%. 展开更多
关键词 gray-box modeling ANFIS hot rolling temperature estimation fuzzy c-means rule base generation
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部