Spatial variation is often encountered when large scale field trials are conducted which can result in biased estimation or prediction of treatment (i.e. genotype) values. An effective removal of spatial variation is ...Spatial variation is often encountered when large scale field trials are conducted which can result in biased estimation or prediction of treatment (i.e. genotype) values. An effective removal of spatial variation is needed to ensure unbiased estimation or prediction and thus increase the accuracy of field data evaluation. A moving grid adjustment (MGA) method, which was proposed by Technow, was evaluated through Monte Carlo simulation for its statistical properties regarding field spatial variation control. Our simulation results showed that the MGA method can effectively account for field spatial variation if it does exist;however, this method will not change phenotype results if field spatial variation does not exist. The MGA method was applied to a large-scale cotton field trial data set with two representative agronomic traits: lint yield (strong field spatial pattern) and lint percentage (no field spatial pattern). The results suggested that the MGA method was able to effectively separate the spatial variation including blocking effects from random error variation for lint yield while the adjusted data remained almost identical to the original phenotypic data. With application of the MGA method, the estimated variance for residuals was significantly reduced (62.2% decrease) for lint yield while more genetic variation (29.7% increase) was detected compared to the original data analysis subject to the conventional randomized complete block design analysis. On the other hand, the results were almost identical for lint percentage with and without the application of the MGA method. Therefore, the MGA method can be a useful addition to enhance data analysis when field spatial pattern exists.展开更多
This report introduced new concept and technics for a grid-based fishery management system. The fishing ground was first divided into small grid of equal area, each with predefined longitudes and latitudes (both 0.033...This report introduced new concept and technics for a grid-based fishery management system. The fishing ground was first divided into small grid of equal area, each with predefined longitudes and latitudes (both 0.033 degrees or approximately 2 × 2 nautical miles in this study). All grids were laid and formatted into a Microsoft-Excel spreadsheet system, as defined by the coastline. Individual sheets were also constructed to represent different ecological characters, serving as supporting data of the main grid-map. Including individual fishing record, water depth, wind & current vector, benthic character, etc. Cellular automata (CA) mathematics was applied for simulation studies. They were programmed on the built-in Visual BASIC langrage in EXCEL. In a three-year research project, the author was able to accomplish the following major results: 1) An EXCEL-based spreadsheet system for storage of fishing effort in each grid. Provided that data of fishing yield is also available for each grid, research model for fishery management can be constructed, leading toward solutions for total allowable catch (TAC) as well as maximum economic yield (MEY). 2) A multi-layered, 2-dimentional spread-sheet system demonstrating the distribution of relative intensity for individual grids. The system can be decked up with different ecological data for more advanced studies. 3) Estimation of the nearest distance between two special grids as well as fishing harbors. This would help in more efficient navigation management and allocation of fishing rights for the fishing vessels.展开更多
文摘Spatial variation is often encountered when large scale field trials are conducted which can result in biased estimation or prediction of treatment (i.e. genotype) values. An effective removal of spatial variation is needed to ensure unbiased estimation or prediction and thus increase the accuracy of field data evaluation. A moving grid adjustment (MGA) method, which was proposed by Technow, was evaluated through Monte Carlo simulation for its statistical properties regarding field spatial variation control. Our simulation results showed that the MGA method can effectively account for field spatial variation if it does exist;however, this method will not change phenotype results if field spatial variation does not exist. The MGA method was applied to a large-scale cotton field trial data set with two representative agronomic traits: lint yield (strong field spatial pattern) and lint percentage (no field spatial pattern). The results suggested that the MGA method was able to effectively separate the spatial variation including blocking effects from random error variation for lint yield while the adjusted data remained almost identical to the original phenotypic data. With application of the MGA method, the estimated variance for residuals was significantly reduced (62.2% decrease) for lint yield while more genetic variation (29.7% increase) was detected compared to the original data analysis subject to the conventional randomized complete block design analysis. On the other hand, the results were almost identical for lint percentage with and without the application of the MGA method. Therefore, the MGA method can be a useful addition to enhance data analysis when field spatial pattern exists.
文摘This report introduced new concept and technics for a grid-based fishery management system. The fishing ground was first divided into small grid of equal area, each with predefined longitudes and latitudes (both 0.033 degrees or approximately 2 × 2 nautical miles in this study). All grids were laid and formatted into a Microsoft-Excel spreadsheet system, as defined by the coastline. Individual sheets were also constructed to represent different ecological characters, serving as supporting data of the main grid-map. Including individual fishing record, water depth, wind & current vector, benthic character, etc. Cellular automata (CA) mathematics was applied for simulation studies. They were programmed on the built-in Visual BASIC langrage in EXCEL. In a three-year research project, the author was able to accomplish the following major results: 1) An EXCEL-based spreadsheet system for storage of fishing effort in each grid. Provided that data of fishing yield is also available for each grid, research model for fishery management can be constructed, leading toward solutions for total allowable catch (TAC) as well as maximum economic yield (MEY). 2) A multi-layered, 2-dimentional spread-sheet system demonstrating the distribution of relative intensity for individual grids. The system can be decked up with different ecological data for more advanced studies. 3) Estimation of the nearest distance between two special grids as well as fishing harbors. This would help in more efficient navigation management and allocation of fishing rights for the fishing vessels.