The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition...The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.展开更多
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
BACKGROUND Hepatocellular carcinoma ranks among the most prevalent malignant neoplasms.Surgical intervention constitutes a critical therapeutic approach for this condition.Nonetheless,postoperative recovery is frequen...BACKGROUND Hepatocellular carcinoma ranks among the most prevalent malignant neoplasms.Surgical intervention constitutes a critical therapeutic approach for this condition.Nonetheless,postoperative recovery is frequently influenced by the patient's nutritional status and the quality of nursing care provided.AIM To examine the comprehensive impact of personalized nutritional support and nursing strategies on the postoperative rehabilitation of patients with liver cancer.METHODS In this study,a retrospective comparative analysis was conducted involving 60 post-operative liver cancer patients.The subjects were selected as subjects and divided into two groups based on differing nursing interventions,with each group comprising 30 patients.The control group received standard nutritional support and care,whereas the experimental group received individualized nutritional support and nursing strategies.The study aimed to evaluate the impact of individualized nutrition by comparing the rehabilitation indices,nutritional status,quality of life(QoL),and complication rates between the two groups.RESULTS The results showed that the recovery index of the experimental group was significantly better than that of the control group 2 weeks after surgery,and the average liver function recovery index of the experimental group was 85.significantly higher than that of the control group(73.67±7.19).In terms of nutritional status,the serum albumin level and body weight stabilization rate of the experimental group were also significantly higher than those of the control group,which were 42.33±2.4 g/L and 93.3%,respectively,compared with 36.01±3.85 g/L and 76.7%of the control group.In addition,the average QoL score of the experimental group was 84.66±3.7 points,which was significantly higher than that of the control group(70.92±4.28 points).At the psychological level,the average anxiety score of the experimental group was 1.17±0.29,and the average depression score was 1.47±0.4,which were significantly lower than the 2.26±0.42 and 2.57±0.45 of the control group.This showed that patients in the experimental group were better relieved of anxiety and depression under the individualized nutrition support and nursing strategy.More importantly,the complication rate in the experimental group was only 10%,much lower than the 33.3%in the control group.CONCLUSION Personalized nutritional support and tailored nursing strategies significantly enhance the postoperative rehabilitation of liver cancer patients.Consequently,it is recommended to implement and advocate for these individualized approaches to improve both the recovery outcomes and QoL for these patients.展开更多
University student Party branches serve as the Party’s grassroots organizations within universities and act as a bridge and link between the Party and students.Therefore,it is essential to strengthen the development ...University student Party branches serve as the Party’s grassroots organizations within universities and act as a bridge and link between the Party and students.Therefore,it is essential to strengthen the development of student Party branches and enhance the effectiveness of student Party member education and training.This paper summarizes and analyzes the issues in the construction of student Party branches in universities and explores strategies for improving their quality,aiming to provide a reference for relevant personnel.展开更多
This paper addresses the shortcomings of the Sparrow and Eagle Optimization Algorithm (SBOA) in terms of convergence accuracy, convergence speed, and susceptibility to local optima. To this end, an improved Sparrow an...This paper addresses the shortcomings of the Sparrow and Eagle Optimization Algorithm (SBOA) in terms of convergence accuracy, convergence speed, and susceptibility to local optima. To this end, an improved Sparrow and Eagle Optimization Algorithm (HS-SBOA) is proposed. Initially, the algorithm employs Iterative Mapping to generate an initial sparrow and eagle population, enhancing the diversity of the population during the global search phase. Subsequently, an adaptive weighting strategy is introduced during the exploration phase of the algorithm to achieve a balance between exploration and exploitation. Finally, to avoid the algorithm falling into local optima, a Cauchy mutation operation is applied to the current best individual. To validate the performance of the HS-SBOA algorithm, it was applied to the CEC2021 benchmark function set and three practical engineering problems, and compared with other optimization algorithms such as the Grey Wolf Optimization (GWO), Particle Swarm Optimization (PSO), and Whale Optimization Algorithm (WOA) to test the effectiveness of the improved algorithm. The simulation experimental results show that the HS-SBOA algorithm demonstrates significant advantages in terms of convergence speed and accuracy, thereby validating the effectiveness of its improved strategies.展开更多
Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evo...Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evolution reaction(HER),and corrosion side reactions.Herein,we propose a surface engineering modification strategy for coating the montmorillonite(MMT)layer onto the surface of the Zn anode to tackle these issues,thereby achieving high cycling stability for rechargeable AZIBs.The results reveal that the MMT layer on the surface of the Zn anode is able to provide ordered zincophilic channels for zinc ions migration,facilitating the reaction kinetics of zinc ions.Density functional theory(DFT)calculations and water contact angle(CA)tests prove that MMT@Zn anode exhibits superior adsorption capacity for Zn^(2+)and better hydrophobicity than the bare Zn anode,thereby achieving excellent cycling stability.Moreover,the MMT@Zn||MMT@Zn symmetric cell holds the stable cycling over 5600 h at 0.5 mA cm^(-2)and 0.125 m A h cm^(-2),even exceeding 1800 h long cycling under harsh conditions of 5 m A cm^(-2)and 1.25 m A h cm^(-2).The MMT@Zn||V_(2)O_(5)full cell reaches over 3000 cycles at 2 A g^(-1)with excellent rate capability.Therefore,this surface engineering modification strategy for enhancing the electrochemical performance of AZIBs represents a promising application.展开更多
This article explores the leader-following consensus tracking(LFCK)control issues of multi-agent systems(MASs)in the presence of external disturbances and general directed fixed communication topology.Its purpose is t...This article explores the leader-following consensus tracking(LFCK)control issues of multi-agent systems(MASs)in the presence of external disturbances and general directed fixed communication topology.Its purpose is to enable all follower agents to achieve consensus tracking for the leader agent.Firstly,this article introduces an extended state observer for estimating each follower agent's unknown state and external disturbance.Subsequently,on the basis of the above-extended state observer and a dynamic event-triggered strategy,a distributed consensus tracking control protocol with disturbances restraint is developed,which can reduce the MAS's update frequency on the premise of ensuring the control protocol's effectiveness.Furthermore,the MAS's stability and the absence of Zeno behavior are analyzed and proved by the established Lyapunov functional and linear matrix inequality theory.Finally,the validity and feasibility of the proposed approach are validated through a group of comparative numerical simulation experiments.展开更多
To achieve low-carbon economic operation of hydrogen-doped integrated energy systems while mitigating the stochastic impact of new energy outputs on the system,the coordinated operation mode of hydrogen-doped gas turb...To achieve low-carbon economic operation of hydrogen-doped integrated energy systems while mitigating the stochastic impact of new energy outputs on the system,the coordinated operation mode of hydrogen-doped gas turbines and electrolyzers is focused on,as well as a hybrid energy storage scheme involving both hydrogen and heat storage and an optimized scheduling model for integrated energy systems encompassing electricity-hydrogen-heat-cooling conversions is established.A model predictive control strategy based on deep learning prediction and feedback is proposed,and the effectiveness and superiority of the proposed strategy are demonstrated using error penalty coefficients.Moreover,the introduction of hydrogen energy exchange and ladder carbon trading is shown to effectively guide the low-carbon economic operation of hydrogen-doped integrated energy systems across multiple typical scenarios.A sensitivity analysis is conducted based on this framework,revealing that increases in the hydrogen doping ratio of turbines and the carbon base price led to higher system operation costs but effectively reduce carbon emissions.展开更多
A hybrid strategy is proposed to solve the problems of poor population diversity, insufficient convergence accuracy and susceptibility to local optimal values in the original Arctic Puffin Optimization (APO) algorithm...A hybrid strategy is proposed to solve the problems of poor population diversity, insufficient convergence accuracy and susceptibility to local optimal values in the original Arctic Puffin Optimization (APO) algorithm, Enhanced Tangent Flight Adaptive Arctic Puffin Optimization with Elite initialization and Adaptive t-distribution Mutation (ETAAPO). Elite initialization improves initial population quality and accelerates convergence. Tangent Flight of the Tangent search algorithm replaces Levy Flight to balance local search and global exploration. The adaptive t-distribution mutation strategy enhances the optimization ability. ETAAPO was tested on CEC2021 functions, Wilcoxon rank-sum tests, and engineering problems, demonstrating superior optimization performance and faster convergence.展开更多
Introduced by the late Prime Minister Shinzo Abe and inherited and developed by Fumio Kishida,Japan's“Indo–Pacific”strategy has gradually taken shape.This strategy can be deemed a broad vision,covering a wide r...Introduced by the late Prime Minister Shinzo Abe and inherited and developed by Fumio Kishida,Japan's“Indo–Pacific”strategy has gradually taken shape.This strategy can be deemed a broad vision,covering a wide range of topics and an extensive network of partners,with a strong trend of pan-securitization.It is a comprehensive inter national st rateg y based on Japan's alliance policy and China containment strategy,following a global,security-oriented approach.Driven by considerations such as maintaining its economic status,realizing its long-cherished dream of becoming a political powerhouse,and containing China,Japan has stepped up its“Indo–Pacific”strategy,which may influence global development,undermine regional maritime security,and impede China's reunification process.Meanwhile,Japan's“Indo–Pacific”strategy faces the triple challenge of a strategic overdraft,the unstable economic foundations,and the weak external support.These constraints may not suffice to reverse the direction of Japan's“Indo–Pacific”strategy in the short term but will limit its effectiveness.展开更多
Self-serving,rational agents sometimes cooperate to their mutual benefit.The two-player iterated prisoner′s dilemma game is a model for including the emergence of cooperation.It is generally believed that there is no...Self-serving,rational agents sometimes cooperate to their mutual benefit.The two-player iterated prisoner′s dilemma game is a model for including the emergence of cooperation.It is generally believed that there is no simple ultimatum strategy which a player can control the return of the other participants.The zero-determinant strategy in the iterated prisoner′s dilemma dramatically expands our understanding of the classic game by uncovering strategies that provide a unilateral advantage to sentient players pitted against unwitting opponents.However,strategies in the prisoner′s dilemma game are only two strategies.Are there these results for general multi-strategy games?To address this question,the paper develops a theory for zero-determinant strategies for multi-strategy games,with any number of strategies.The analytical results exhibit a similar yet different scenario to the case of two-strategy games.The results are also applied to the Snowdrift game,the Hawk-Dove game and the Chicken game.展开更多
The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainl...The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainly concentrate on the cooperative pursuit of multiple players in two-dimensional pursuit-evasion games. However, these approaches can hardly be applied to practical situations where players usually move in three-dimensional space with a three-degree-of-freedom control. In this paper,we make the first attempt to investigate the equilibrium strategy of the realistic pursuit-evasion game, in which the pursuer follows a three-degree-of-freedom control, and the evader moves freely. First, we describe the pursuer's three-degree-of-freedom control and the evader's relative coordinate. We then rigorously derive the equilibrium strategy by solving the retrogressive path equation according to the Hamilton-Jacobi-Bellman-Isaacs(HJBI) method, which divides the pursuit-evasion process into the navigation and acceleration phases. Besides, we analyze the maximum allowable speed for the pursuer to capture the evader successfully and provide the strategy with which the evader can escape when the pursuer's speed exceeds the threshold. We further conduct comparison tests with various unilateral deviations to verify that the proposed strategy forms a Nash equilibrium.展开更多
BACKGROUND Models for predicting hepatitis B e antigen(HBeAg)seroconversion in patients with HBeAg-positive chronic hepatitis B(CHB)after nucleos(t)ide analog treatment are rare.AIM To establish a simple scoring model...BACKGROUND Models for predicting hepatitis B e antigen(HBeAg)seroconversion in patients with HBeAg-positive chronic hepatitis B(CHB)after nucleos(t)ide analog treatment are rare.AIM To establish a simple scoring model based on a response-guided therapy(RGT)strategy for predicting HBeAg seroconversion and hepatitis B surface antigen(HBsAg)clearance.METHODS In this study,75 previously treated patients with HBeAg-positive CHB underwent a 52-week peginterferon-alfa(PEG-IFNα)treatment and a 24-wk follow-up.Logistic regression analysis was used to assess parameters at baseline,week 12,and week 24 to predict HBeAg seroconversion at 24 wk post-treatment.The two best predictors at each time point were used to establish a prediction model for PEG-IFNαtherapy efficacy.Parameters at each time point that met the corresponding optimal cutoff thresholds were scored as 1 or 0.RESULTS The two most meaningful predictors were HBsAg≤1000 IU/mL and HBeAg≤3 S/CO at baseline,HBsAg≤600 IU/mL and HBeAg≤3 S/CO at week 12,and HBsAg≤300 IU/mL and HBeAg≤2 S/CO at week 24.With a total score of 0 vs 2 at baseline,week 12,and week 24,the response rates were 23.8%,15.2%,and 11.1%vs 81.8%,80.0%,and 82.4%,respectively,and the HBsAg clearance rates were 2.4%,3.0%,and 0.0%,vs 54.5%,40.0%,and 41.2%,respectively.CONCLUSION We successfully established a predictive model and diagnosis-treatment process using the RGT strategy to predict HBeAg and HBsAg seroconversion in patients with HBeAg-positive CHB undergoing PEG-IFNαtherapy.展开更多
As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Informatio...As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Information-Centric Networking(ICN)came into being.From a technical point of view,ICN is a promising future network architecture.Researching and customizing a reasonable pricing mechanism plays a positive role in promoting the deployment of ICN.The current research on ICN pricing mechanism is focused on paid content.Therefore,we study an ICN pricing model for free content,which uses game theory based on Nash equilibrium to analysis.In this work,advertisers are considered,and an advertiser model is established to describe the economic interaction between advertisers and ICN entities.This solution can formulate the best pricing strategy for all ICN entities and maximize the benefits of each entity.Our extensive analysis and numerical results show that the proposed pricing framework is significantly better than existing solutions when it comes to free content.展开更多
In recent years,the research focus in insurance risk theory has shifted towards multi-type mixed dividend strategies.However,the practical factors and constraints in financial market transactions,such as interest rate...In recent years,the research focus in insurance risk theory has shifted towards multi-type mixed dividend strategies.However,the practical factors and constraints in financial market transactions,such as interest rates,tax rates,and transaction fees,inevitably impact these strategies.By incorporating appropriate constraints,a multi-type mixed strategy can better simulate real-world transactions.Following the approach of Liu et al.[28],we examine a classical compound Poisson risk model that incorporates the constraints of constant interest rates and a periodic-threshold mixed dividend strategy.In this model,the surplus process of insurance companies is influenced by several factors.These factors include constant interest rates,continuously distributed dividends within intervals(threshold dividend strategy),and dividends at discrete time points(periodic dividend strategy).We derive the piecewise integro-differential equations(IDEs)that describe the expected present value of dividends(EPVDs)until ruin time and the Gerber-Shiu expected discounted penalty function.Furthermore,we provide explicit solutions to these IDEs using an alternative method based on the inverse Laplace transform combined with the Dickson-Hipp operator.This enables us to obtain explicit expressions for the dividend and Gerber-Shiu functions.Additionally,we present examples to illustrate the application of our results.展开更多
Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance ...Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance and safety performance or thermal stability)will restrain their wide commercial application.Herein,a single-crystal Ni-rich Li Ni_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode material is synthesized and modified by a dual-substitution strategy in which the high-valence doping element improves the structural stability by forming strong metal–oxygen binding forces,while the low-valence doping element eliminates high Li^(+)/Ni^(2+)mixing.As a result,this synergistic dual substitution can effectively suppress H2-H3 phase transition and generation of microcracks,thereby ultimately improving the thermodynamic stability of Ni-rich cathode material.Notably,the dual-doped Ni-rich cathode delivers an extremely high capacity retention of 81%after 250 cycles(vs.Li/Li+)in coin-type half cells and 87%after 1000 cycles(vs.graphite/Li^(+))in pouch-type full cells at a high temperature of 55℃.More impressively,the dual-doped sample exhibits excellent thermal stability,which demonstrates a higher thermal runaway temperature and a lower calorific value.The synergetic effects of this dual-substitution strategy pave a new pathway for addressing the critical challenges of Ni-rich cathode at high temperatures,which will significantly advance the high-energy-density and high-safety cathodes to the subsequent commercialization.展开更多
Stroke is a major cause of death and disability among adults in China,and an efficient rehabilitation strategy has been an urgent demand for post-stroke rehabilitation.The non-invasive brain stimulation(NBS)can modula...Stroke is a major cause of death and disability among adults in China,and an efficient rehabilitation strategy has been an urgent demand for post-stroke rehabilitation.The non-invasive brain stimulation(NBS)can modulate the excitability of the cerebral cortex and provide after-effects apart from immediate effects to regain extremity motor functions,whereas robotic therapy provides high-intensity and long-duration repetitive movements to stimulate the cerebral cortex backward.The combined strategy of the two techniques is widely regarded as a promising application for stroke patients with dyskinesia.Transcranial magnetic stimulation(TMS)and transcranial electrical stimulation(TES)are important methods of NBS.Their recovery principles,stimulation parameters,and clinical applications have been summarized.The combined treatments of rTMS/tDCS and robotic therapy are analyzed and discussed to overcome the application barriers of the two techniques.The future development trend and the key technical problems are expounded for the clinical applications.展开更多
Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,ar...Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,are still largely unknown,especially at the genome level,despite their importance in understanding the formation and outbreak of massive green tides.In the present study,the restriction site-associated DNA genotyping approach(2b-RAD)was adopted to identify the genome-wide single-nucleotide polymorphisms(SNPs)of 54 individual thalli including samples collected from Subei Shoal in 2019 and Qingdao coast from 2019 to 2021.SNPs genotype results revealed that most of the thalli in 2019 and 2020 were haploid gametophytes,while only half of the thalli were gametophytes in 2021,indicating flexibility in the reproductive strategies for the formation of the green tides among different years and the dominance of asexual and vegetative reproductive mode for the floating period.Besides,population analysis was conducted,and it revealed a very low genetic diversity among samples from Subei Shoal and the Qingdao coast in the same year and a higher divergence among samples in different years.The results showed the efficiency of 2b-RAD in the exploration of SNPs in U.prolifera and provided the first genome-wide scale evidence for the origin of the large-scale green tides on the Qingdao coast.This study improved our understanding of the reproductive strategy and genetic diversity of the green tide causative species and will help further reveal the biological causes of the green tide in China.展开更多
The high-temperature pyrolysis process for preparing M–N–C single-atom catalyst usually results in high heterogeneity in product structure concurrently contains multiscale metal phases from single atoms(SAs),atomic ...The high-temperature pyrolysis process for preparing M–N–C single-atom catalyst usually results in high heterogeneity in product structure concurrently contains multiscale metal phases from single atoms(SAs),atomic clusters to nanoparticles.Therefore,understanding the interactions among these components,especially the synergistic effects between single atomic sites and cluster sites,is crucial for improving the oxygen reduction reaction(ORR)activity of M–N–C catalysts.Accordingly,herein,we constructed a model catalyst composed of both atomically dispersed FeN4 SA sites and adjacent Fe clusters through a site occupation strategy.We found that the Fe clusters can optimize the adsorption strength of oxygen reduction intermediates on FeN4 SA sites by introducing electron-withdrawing–OH ligands and decreasing the d-band center of the Fe center.The as-developed catalyst exhibits encouraging ORR activity with halfwave potentials(E1/2)of 0.831 and 0.905 V in acidic and alkaline media,respectively.Moreover,the catalyst also represents excellent durability exceeding that of Fe–N–C SA catalyst.The practical application of Fe(Cd)–CNx catalyst is further validated by its superior activity and stability in a metalair battery device.Our work exhibits the great potential of synergistic effects between multiphase metal species for improvements of singleatom site catalysts.展开更多
This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication...This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.展开更多
基金supported by National Natural Science Foundations of China(nos.12271326,62102304,61806120,61502290,61672334,61673251)China Postdoctoral Science Foundation(no.2015M582606)+2 种基金Industrial Research Project of Science and Technology in Shaanxi Province(nos.2015GY016,2017JQ6063)Fundamental Research Fund for the Central Universities(no.GK202003071)Natural Science Basic Research Plan in Shaanxi Province of China(no.2022JM-354).
文摘The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
文摘BACKGROUND Hepatocellular carcinoma ranks among the most prevalent malignant neoplasms.Surgical intervention constitutes a critical therapeutic approach for this condition.Nonetheless,postoperative recovery is frequently influenced by the patient's nutritional status and the quality of nursing care provided.AIM To examine the comprehensive impact of personalized nutritional support and nursing strategies on the postoperative rehabilitation of patients with liver cancer.METHODS In this study,a retrospective comparative analysis was conducted involving 60 post-operative liver cancer patients.The subjects were selected as subjects and divided into two groups based on differing nursing interventions,with each group comprising 30 patients.The control group received standard nutritional support and care,whereas the experimental group received individualized nutritional support and nursing strategies.The study aimed to evaluate the impact of individualized nutrition by comparing the rehabilitation indices,nutritional status,quality of life(QoL),and complication rates between the two groups.RESULTS The results showed that the recovery index of the experimental group was significantly better than that of the control group 2 weeks after surgery,and the average liver function recovery index of the experimental group was 85.significantly higher than that of the control group(73.67±7.19).In terms of nutritional status,the serum albumin level and body weight stabilization rate of the experimental group were also significantly higher than those of the control group,which were 42.33±2.4 g/L and 93.3%,respectively,compared with 36.01±3.85 g/L and 76.7%of the control group.In addition,the average QoL score of the experimental group was 84.66±3.7 points,which was significantly higher than that of the control group(70.92±4.28 points).At the psychological level,the average anxiety score of the experimental group was 1.17±0.29,and the average depression score was 1.47±0.4,which were significantly lower than the 2.26±0.42 and 2.57±0.45 of the control group.This showed that patients in the experimental group were better relieved of anxiety and depression under the individualized nutrition support and nursing strategy.More importantly,the complication rate in the experimental group was only 10%,much lower than the 33.3%in the control group.CONCLUSION Personalized nutritional support and tailored nursing strategies significantly enhance the postoperative rehabilitation of liver cancer patients.Consequently,it is recommended to implement and advocate for these individualized approaches to improve both the recovery outcomes and QoL for these patients.
文摘University student Party branches serve as the Party’s grassroots organizations within universities and act as a bridge and link between the Party and students.Therefore,it is essential to strengthen the development of student Party branches and enhance the effectiveness of student Party member education and training.This paper summarizes and analyzes the issues in the construction of student Party branches in universities and explores strategies for improving their quality,aiming to provide a reference for relevant personnel.
文摘This paper addresses the shortcomings of the Sparrow and Eagle Optimization Algorithm (SBOA) in terms of convergence accuracy, convergence speed, and susceptibility to local optima. To this end, an improved Sparrow and Eagle Optimization Algorithm (HS-SBOA) is proposed. Initially, the algorithm employs Iterative Mapping to generate an initial sparrow and eagle population, enhancing the diversity of the population during the global search phase. Subsequently, an adaptive weighting strategy is introduced during the exploration phase of the algorithm to achieve a balance between exploration and exploitation. Finally, to avoid the algorithm falling into local optima, a Cauchy mutation operation is applied to the current best individual. To validate the performance of the HS-SBOA algorithm, it was applied to the CEC2021 benchmark function set and three practical engineering problems, and compared with other optimization algorithms such as the Grey Wolf Optimization (GWO), Particle Swarm Optimization (PSO), and Whale Optimization Algorithm (WOA) to test the effectiveness of the improved algorithm. The simulation experimental results show that the HS-SBOA algorithm demonstrates significant advantages in terms of convergence speed and accuracy, thereby validating the effectiveness of its improved strategies.
基金National Natural Science Foundation of China(Grant No.22005318,22379152)Western Young Scholars Foundations of Chinese Academy of Sciences+4 种基金Lanzhou Youth Science and Technology Talent Innovation Project(Grant No.2023-NQ-86,No.2023-QN-96)Lanzhou Chengguan District Science and Technology Plan Project(Grant No.2023-rc-4,2022-rc-4)Collaborative Innovation Alliance Fund for Young Science and Technology Worker(Grant No.HZJJ23-7)National Nature Science Foundations of Gansu Province(Grant No.21JR11RA020)Fundamental Research Funds for the Central Universities(Grant No.31920220073,31920230128)。
文摘Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evolution reaction(HER),and corrosion side reactions.Herein,we propose a surface engineering modification strategy for coating the montmorillonite(MMT)layer onto the surface of the Zn anode to tackle these issues,thereby achieving high cycling stability for rechargeable AZIBs.The results reveal that the MMT layer on the surface of the Zn anode is able to provide ordered zincophilic channels for zinc ions migration,facilitating the reaction kinetics of zinc ions.Density functional theory(DFT)calculations and water contact angle(CA)tests prove that MMT@Zn anode exhibits superior adsorption capacity for Zn^(2+)and better hydrophobicity than the bare Zn anode,thereby achieving excellent cycling stability.Moreover,the MMT@Zn||MMT@Zn symmetric cell holds the stable cycling over 5600 h at 0.5 mA cm^(-2)and 0.125 m A h cm^(-2),even exceeding 1800 h long cycling under harsh conditions of 5 m A cm^(-2)and 1.25 m A h cm^(-2).The MMT@Zn||V_(2)O_(5)full cell reaches over 3000 cycles at 2 A g^(-1)with excellent rate capability.Therefore,this surface engineering modification strategy for enhancing the electrochemical performance of AZIBs represents a promising application.
基金supported by Guangdong Major Project of Basic and Applied Basic Research(Grant No.2023B0303000016)the National Natural Science Foundation of China(Grant No.U21A20487)+5 种基金Shenzhen Technology Project(Grant Nos.JCYJ20220818101206014,JCYJ20220818101211025)the CAS Key Technology Talent Program,the National Outstanding Youth Talents Support Program(Grant No.61822304)Shanghai Municipal Science and Technology Major Project(Grant No.2021SHZDZX0100)Shanghai Municipal Commission of Science and Technology Project(Grant No.19511132101)the Projects of Major International(Regional)Joint Research Program of NSFC(Grant No.61720106011)the National Natural Science Foundation of China(Grant No.62372440)。
文摘This article explores the leader-following consensus tracking(LFCK)control issues of multi-agent systems(MASs)in the presence of external disturbances and general directed fixed communication topology.Its purpose is to enable all follower agents to achieve consensus tracking for the leader agent.Firstly,this article introduces an extended state observer for estimating each follower agent's unknown state and external disturbance.Subsequently,on the basis of the above-extended state observer and a dynamic event-triggered strategy,a distributed consensus tracking control protocol with disturbances restraint is developed,which can reduce the MAS's update frequency on the premise of ensuring the control protocol's effectiveness.Furthermore,the MAS's stability and the absence of Zeno behavior are analyzed and proved by the established Lyapunov functional and linear matrix inequality theory.Finally,the validity and feasibility of the proposed approach are validated through a group of comparative numerical simulation experiments.
基金supported by Key project of the National Natural Science Foundation of China(Grant No.U2243243)National key research and development program(Grant No.2022YFE0101600)。
文摘To achieve low-carbon economic operation of hydrogen-doped integrated energy systems while mitigating the stochastic impact of new energy outputs on the system,the coordinated operation mode of hydrogen-doped gas turbines and electrolyzers is focused on,as well as a hybrid energy storage scheme involving both hydrogen and heat storage and an optimized scheduling model for integrated energy systems encompassing electricity-hydrogen-heat-cooling conversions is established.A model predictive control strategy based on deep learning prediction and feedback is proposed,and the effectiveness and superiority of the proposed strategy are demonstrated using error penalty coefficients.Moreover,the introduction of hydrogen energy exchange and ladder carbon trading is shown to effectively guide the low-carbon economic operation of hydrogen-doped integrated energy systems across multiple typical scenarios.A sensitivity analysis is conducted based on this framework,revealing that increases in the hydrogen doping ratio of turbines and the carbon base price led to higher system operation costs but effectively reduce carbon emissions.
文摘A hybrid strategy is proposed to solve the problems of poor population diversity, insufficient convergence accuracy and susceptibility to local optimal values in the original Arctic Puffin Optimization (APO) algorithm, Enhanced Tangent Flight Adaptive Arctic Puffin Optimization with Elite initialization and Adaptive t-distribution Mutation (ETAAPO). Elite initialization improves initial population quality and accelerates convergence. Tangent Flight of the Tangent search algorithm replaces Levy Flight to balance local search and global exploration. The adaptive t-distribution mutation strategy enhances the optimization ability. ETAAPO was tested on CEC2021 functions, Wilcoxon rank-sum tests, and engineering problems, demonstrating superior optimization performance and faster convergence.
文摘Introduced by the late Prime Minister Shinzo Abe and inherited and developed by Fumio Kishida,Japan's“Indo–Pacific”strategy has gradually taken shape.This strategy can be deemed a broad vision,covering a wide range of topics and an extensive network of partners,with a strong trend of pan-securitization.It is a comprehensive inter national st rateg y based on Japan's alliance policy and China containment strategy,following a global,security-oriented approach.Driven by considerations such as maintaining its economic status,realizing its long-cherished dream of becoming a political powerhouse,and containing China,Japan has stepped up its“Indo–Pacific”strategy,which may influence global development,undermine regional maritime security,and impede China's reunification process.Meanwhile,Japan's“Indo–Pacific”strategy faces the triple challenge of a strategic overdraft,the unstable economic foundations,and the weak external support.These constraints may not suffice to reverse the direction of Japan's“Indo–Pacific”strategy in the short term but will limit its effectiveness.
文摘Self-serving,rational agents sometimes cooperate to their mutual benefit.The two-player iterated prisoner′s dilemma game is a model for including the emergence of cooperation.It is generally believed that there is no simple ultimatum strategy which a player can control the return of the other participants.The zero-determinant strategy in the iterated prisoner′s dilemma dramatically expands our understanding of the classic game by uncovering strategies that provide a unilateral advantage to sentient players pitted against unwitting opponents.However,strategies in the prisoner′s dilemma game are only two strategies.Are there these results for general multi-strategy games?To address this question,the paper develops a theory for zero-determinant strategies for multi-strategy games,with any number of strategies.The analytical results exhibit a similar yet different scenario to the case of two-strategy games.The results are also applied to the Snowdrift game,the Hawk-Dove game and the Chicken game.
基金supported in part by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA27030100)National Natural Science Foundation of China(72293575, 11832001)。
文摘The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainly concentrate on the cooperative pursuit of multiple players in two-dimensional pursuit-evasion games. However, these approaches can hardly be applied to practical situations where players usually move in three-dimensional space with a three-degree-of-freedom control. In this paper,we make the first attempt to investigate the equilibrium strategy of the realistic pursuit-evasion game, in which the pursuer follows a three-degree-of-freedom control, and the evader moves freely. First, we describe the pursuer's three-degree-of-freedom control and the evader's relative coordinate. We then rigorously derive the equilibrium strategy by solving the retrogressive path equation according to the Hamilton-Jacobi-Bellman-Isaacs(HJBI) method, which divides the pursuit-evasion process into the navigation and acceleration phases. Besides, we analyze the maximum allowable speed for the pursuer to capture the evader successfully and provide the strategy with which the evader can escape when the pursuer's speed exceeds the threshold. We further conduct comparison tests with various unilateral deviations to verify that the proposed strategy forms a Nash equilibrium.
基金Supported by the Anhui Provincial Natural Science Foundation,No.2108085MH298the Scientific Research Project of the Second Affiliated Hospital of Anhui Medical University,No.2019GMFY02 and 2021lcxk027the Scientific Research Project of Colleges and Universities in Anhui Province,No.KJ2021A0323.
文摘BACKGROUND Models for predicting hepatitis B e antigen(HBeAg)seroconversion in patients with HBeAg-positive chronic hepatitis B(CHB)after nucleos(t)ide analog treatment are rare.AIM To establish a simple scoring model based on a response-guided therapy(RGT)strategy for predicting HBeAg seroconversion and hepatitis B surface antigen(HBsAg)clearance.METHODS In this study,75 previously treated patients with HBeAg-positive CHB underwent a 52-week peginterferon-alfa(PEG-IFNα)treatment and a 24-wk follow-up.Logistic regression analysis was used to assess parameters at baseline,week 12,and week 24 to predict HBeAg seroconversion at 24 wk post-treatment.The two best predictors at each time point were used to establish a prediction model for PEG-IFNαtherapy efficacy.Parameters at each time point that met the corresponding optimal cutoff thresholds were scored as 1 or 0.RESULTS The two most meaningful predictors were HBsAg≤1000 IU/mL and HBeAg≤3 S/CO at baseline,HBsAg≤600 IU/mL and HBeAg≤3 S/CO at week 12,and HBsAg≤300 IU/mL and HBeAg≤2 S/CO at week 24.With a total score of 0 vs 2 at baseline,week 12,and week 24,the response rates were 23.8%,15.2%,and 11.1%vs 81.8%,80.0%,and 82.4%,respectively,and the HBsAg clearance rates were 2.4%,3.0%,and 0.0%,vs 54.5%,40.0%,and 41.2%,respectively.CONCLUSION We successfully established a predictive model and diagnosis-treatment process using the RGT strategy to predict HBeAg and HBsAg seroconversion in patients with HBeAg-positive CHB undergoing PEG-IFNαtherapy.
基金supported by the Key R&D Program of Anhui Province in 2020 under Grant No.202004a05020078China Environment for Network Innovations(CENI)under Grant No.2016-000052-73-01-000515.
文摘As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Information-Centric Networking(ICN)came into being.From a technical point of view,ICN is a promising future network architecture.Researching and customizing a reasonable pricing mechanism plays a positive role in promoting the deployment of ICN.The current research on ICN pricing mechanism is focused on paid content.Therefore,we study an ICN pricing model for free content,which uses game theory based on Nash equilibrium to analysis.In this work,advertisers are considered,and an advertiser model is established to describe the economic interaction between advertisers and ICN entities.This solution can formulate the best pricing strategy for all ICN entities and maximize the benefits of each entity.Our extensive analysis and numerical results show that the proposed pricing framework is significantly better than existing solutions when it comes to free content.
基金supported by the National Natural Science Foundation of China(12361095)the Jiangxi Provincial Natural Science Foundation(20232BAB201028)。
文摘In recent years,the research focus in insurance risk theory has shifted towards multi-type mixed dividend strategies.However,the practical factors and constraints in financial market transactions,such as interest rates,tax rates,and transaction fees,inevitably impact these strategies.By incorporating appropriate constraints,a multi-type mixed strategy can better simulate real-world transactions.Following the approach of Liu et al.[28],we examine a classical compound Poisson risk model that incorporates the constraints of constant interest rates and a periodic-threshold mixed dividend strategy.In this model,the surplus process of insurance companies is influenced by several factors.These factors include constant interest rates,continuously distributed dividends within intervals(threshold dividend strategy),and dividends at discrete time points(periodic dividend strategy).We derive the piecewise integro-differential equations(IDEs)that describe the expected present value of dividends(EPVDs)until ruin time and the Gerber-Shiu expected discounted penalty function.Furthermore,we provide explicit solutions to these IDEs using an alternative method based on the inverse Laplace transform combined with the Dickson-Hipp operator.This enables us to obtain explicit expressions for the dividend and Gerber-Shiu functions.Additionally,we present examples to illustrate the application of our results.
基金financially supported by the Natural Science Foundation of Jiangsu Province,China (BK20210887)the Jiangsu Provincial Double Innovation Program,China (JSSCB20210984)+1 种基金the Natural Science Fund for Colleges and Universities of Jiangsu Province,China (21KJB450003)the Jiangsu University of Science and Technology Doctoral Research Start-up Fund,China (120200012)。
文摘Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance and safety performance or thermal stability)will restrain their wide commercial application.Herein,a single-crystal Ni-rich Li Ni_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode material is synthesized and modified by a dual-substitution strategy in which the high-valence doping element improves the structural stability by forming strong metal–oxygen binding forces,while the low-valence doping element eliminates high Li^(+)/Ni^(2+)mixing.As a result,this synergistic dual substitution can effectively suppress H2-H3 phase transition and generation of microcracks,thereby ultimately improving the thermodynamic stability of Ni-rich cathode material.Notably,the dual-doped Ni-rich cathode delivers an extremely high capacity retention of 81%after 250 cycles(vs.Li/Li+)in coin-type half cells and 87%after 1000 cycles(vs.graphite/Li^(+))in pouch-type full cells at a high temperature of 55℃.More impressively,the dual-doped sample exhibits excellent thermal stability,which demonstrates a higher thermal runaway temperature and a lower calorific value.The synergetic effects of this dual-substitution strategy pave a new pathway for addressing the critical challenges of Ni-rich cathode at high temperatures,which will significantly advance the high-energy-density and high-safety cathodes to the subsequent commercialization.
基金Supported by National Natural Science Foundation of China(Grant Nos.52375279,52175001)National Key R&D Program of China(Grant No.2018YFB1307004).
文摘Stroke is a major cause of death and disability among adults in China,and an efficient rehabilitation strategy has been an urgent demand for post-stroke rehabilitation.The non-invasive brain stimulation(NBS)can modulate the excitability of the cerebral cortex and provide after-effects apart from immediate effects to regain extremity motor functions,whereas robotic therapy provides high-intensity and long-duration repetitive movements to stimulate the cerebral cortex backward.The combined strategy of the two techniques is widely regarded as a promising application for stroke patients with dyskinesia.Transcranial magnetic stimulation(TMS)and transcranial electrical stimulation(TES)are important methods of NBS.Their recovery principles,stimulation parameters,and clinical applications have been summarized.The combined treatments of rTMS/tDCS and robotic therapy are analyzed and discussed to overcome the application barriers of the two techniques.The future development trend and the key technical problems are expounded for the clinical applications.
基金Supported by the Laoshan Laboratory (No.LSKJ202204005)the Mount Tai Scholar Climbing Plan to Song SUNthe Open Fund of CAS Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences (No.KLMEES201801)
文摘Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,are still largely unknown,especially at the genome level,despite their importance in understanding the formation and outbreak of massive green tides.In the present study,the restriction site-associated DNA genotyping approach(2b-RAD)was adopted to identify the genome-wide single-nucleotide polymorphisms(SNPs)of 54 individual thalli including samples collected from Subei Shoal in 2019 and Qingdao coast from 2019 to 2021.SNPs genotype results revealed that most of the thalli in 2019 and 2020 were haploid gametophytes,while only half of the thalli were gametophytes in 2021,indicating flexibility in the reproductive strategies for the formation of the green tides among different years and the dominance of asexual and vegetative reproductive mode for the floating period.Besides,population analysis was conducted,and it revealed a very low genetic diversity among samples from Subei Shoal and the Qingdao coast in the same year and a higher divergence among samples in different years.The results showed the efficiency of 2b-RAD in the exploration of SNPs in U.prolifera and provided the first genome-wide scale evidence for the origin of the large-scale green tides on the Qingdao coast.This study improved our understanding of the reproductive strategy and genetic diversity of the green tide causative species and will help further reveal the biological causes of the green tide in China.
基金supported by the National Natural Science Foundation of China(22109100,22075203)Guangdong Basic and Applied Basic Research Foundation(2022A1515011677)+1 种基金Shenzhen Science and Technology Project Program(JCYJ2021032409420401)Natural Science Foundation of SZU(000002111605).
文摘The high-temperature pyrolysis process for preparing M–N–C single-atom catalyst usually results in high heterogeneity in product structure concurrently contains multiscale metal phases from single atoms(SAs),atomic clusters to nanoparticles.Therefore,understanding the interactions among these components,especially the synergistic effects between single atomic sites and cluster sites,is crucial for improving the oxygen reduction reaction(ORR)activity of M–N–C catalysts.Accordingly,herein,we constructed a model catalyst composed of both atomically dispersed FeN4 SA sites and adjacent Fe clusters through a site occupation strategy.We found that the Fe clusters can optimize the adsorption strength of oxygen reduction intermediates on FeN4 SA sites by introducing electron-withdrawing–OH ligands and decreasing the d-band center of the Fe center.The as-developed catalyst exhibits encouraging ORR activity with halfwave potentials(E1/2)of 0.831 and 0.905 V in acidic and alkaline media,respectively.Moreover,the catalyst also represents excellent durability exceeding that of Fe–N–C SA catalyst.The practical application of Fe(Cd)–CNx catalyst is further validated by its superior activity and stability in a metalair battery device.Our work exhibits the great potential of synergistic effects between multiphase metal species for improvements of singleatom site catalysts.
基金supported in part by the National Natural Science Foundation of China (61933007,62273087,U22A2044,61973102,62073180)the Shanghai Pujiang Program of China (22PJ1400400)+1 种基金the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.