In the present paper we introduce a random iteration scheme for three random operators defined on a closed and convex subset of a uniformly convex Banach space and prove its convergence to a common fixed point of thre...In the present paper we introduce a random iteration scheme for three random operators defined on a closed and convex subset of a uniformly convex Banach space and prove its convergence to a common fixed point of three random operators. The result is also an extension of a known theorem in the corresponding non-random case.展开更多
In this paper, we introduce and study a new system of generalized vari- ational inclusions involving H-η-monotone operators in uniformly smooth Banach spaces. Using the resolvent operator technique associated with H-...In this paper, we introduce and study a new system of generalized vari- ational inclusions involving H-η-monotone operators in uniformly smooth Banach spaces. Using the resolvent operator technique associated with H-η-monotone opera- tors, we prove the approximation solvability of solutions using an iterative algorithm. The results in this paper extend and improve some known results from the literature.展开更多
A new concept of generalized set-valued strongly accretive mappings in Banach spaces was given and some strong convergence theorems of Ishikawa and Mann iterative process with errors approximation methods by Huang et ...A new concept of generalized set-valued strongly accretive mappings in Banach spaces was given and some strong convergence theorems of Ishikawa and Mann iterative process with errors approximation methods by Huang et al. was proved. The results presented in this paper improve and extend the earlier results obtained by Huang et al.展开更多
We obtain characterizations of nearly strong convexity and nearly very convexity by using the dual concept of S and WS points,related to the so-called Rolewicz’s property(α).We give a characterization of those point...We obtain characterizations of nearly strong convexity and nearly very convexity by using the dual concept of S and WS points,related to the so-called Rolewicz’s property(α).We give a characterization of those points in terms of continuity properties of the identity mapping.The connection between these two geometric properties is established,and finally an application to approximative compactness is given.展开更多
In this paper, the so-called(p,Ф)-Carleson measure is introduced and the rela-tionship between vector-valued martingales in the general Campanato spaces Lp,Ф(X) and the (p, Ф)-Carleson measures is investigate...In this paper, the so-called(p,Ф)-Carleson measure is introduced and the rela-tionship between vector-valued martingales in the general Campanato spaces Lp,Ф(X) and the (p, Ф)-Carleson measures is investigated. Specifically, it is proved that for q ∈ [2, ∞), the measure d# :-=││ dfk││^qdP dm is a (q, Ф)-Carleson measure on Ω × N for every f ∈ Lq,Ф(X) if and only if X has an equivalent norm which is q-uniformly convex; while for p C (1, 2], the measure dμ :=││dfk││^pP dm is a (p, Ф)-Carleson measure on Ω ×N implies that f ∈ Lp,Ф(X) if and only if X admits an equivalent norm which is p-uniformly smooth. This result extends an earlier result in the literature from BMO spaces to general Campanato spaces.展开更多
We study the single projection algorithm of Tseng for solving a variational inequality problem in a 2-uniformly convex Banach space.The underline cost function of the variational inequality is assumed to be monotone a...We study the single projection algorithm of Tseng for solving a variational inequality problem in a 2-uniformly convex Banach space.The underline cost function of the variational inequality is assumed to be monotone and Lipschitz continuous.A weak convergence result is obtained under reasonable assumptions on the variable step-sizes.We also give the strong convergence result for when the underline cost function is strongly monotone and Lipchitz continuous.For this strong convergence case,the proposed method does not require prior knowledge of the modulus of strong monotonicity and the Lipschitz constant of the cost function as input parameters,rather,the variable step-sizes are diminishing and non-summable.The asymptotic estimate of the convergence rate for the strong convergence case is also given.For completeness,we give another strong convergence result using the idea of Halpern iteration when the cost function is monotone and Lipschitz continuous and the variable step-sizes are bounded by the inverse of the Lipschitz constant of the cost function.Finally,we give an example of a contact problem where our proposed method can be applied.展开更多
This paper studies the convergence of the sequence defined by x0 ∈ C, xn+l =αnu+(1-αn)Txn, n=0, 1,2,..., where 0 ≤αn ≤ 1, limn→∞ αn = 0, ∑n=0^∞ αn = ∞, and T is a nonexpansive mapping from a nonempty...This paper studies the convergence of the sequence defined by x0 ∈ C, xn+l =αnu+(1-αn)Txn, n=0, 1,2,..., where 0 ≤αn ≤ 1, limn→∞ αn = 0, ∑n=0^∞ αn = ∞, and T is a nonexpansive mapping from a nonempty closed convex subset C of a Banach space X into itself. The iterative sequence {xn} converges strongly to a fixed point of T in the case when X is a uniformly convex Banach space with a uniformly Gateaux differentiable norm or a uniformly smooth Banach space only. The results presented in this paper extend and improve some recent results.展开更多
The existence of common fixed points for a pair of Lipschitzian mappings in Banach spaces is proved. By using this result, some common fixed point theorems are also established for these mappings in Hilbert spaces, in...The existence of common fixed points for a pair of Lipschitzian mappings in Banach spaces is proved. By using this result, some common fixed point theorems are also established for these mappings in Hilbert spaces, in L p spaces, in Hardy spaces H p, and in Sobolev spaces H r,p , for 1<p<+∞ and r≥0.展开更多
A new system of general nonlinear variational inclusions is introduced and studied in Banach spaces. An iterative algorithm is developed and analyzed by use of the resolvent operator techniques to find the approximate...A new system of general nonlinear variational inclusions is introduced and studied in Banach spaces. An iterative algorithm is developed and analyzed by use of the resolvent operator techniques to find the approximate solutions of the system of general nonlinear variational inclusions involving different nonlinear operators in uniformly smooth Banach spaces.展开更多
文摘In the present paper we introduce a random iteration scheme for three random operators defined on a closed and convex subset of a uniformly convex Banach space and prove its convergence to a common fixed point of three random operators. The result is also an extension of a known theorem in the corresponding non-random case.
基金The NSF(60804065)of Chinathe Foundation(11A028)of China West Normal University
文摘In this paper, we introduce and study a new system of generalized vari- ational inclusions involving H-η-monotone operators in uniformly smooth Banach spaces. Using the resolvent operator technique associated with H-η-monotone opera- tors, we prove the approximation solvability of solutions using an iterative algorithm. The results in this paper extend and improve some known results from the literature.
基金The foundation project of Chengdu University of Information Technology (No.CRF200502)
文摘A new concept of generalized set-valued strongly accretive mappings in Banach spaces was given and some strong convergence theorems of Ishikawa and Mann iterative process with errors approximation methods by Huang et al. was proved. The results presented in this paper improve and extend the earlier results obtained by Huang et al.
基金supported in part by the National Natural Science Foundation of China (11671252,11771248)supported by Proyecto MTM2014-57838-C2-2-P (Spain)the Universitat Politècnica de València (Spain)
文摘We obtain characterizations of nearly strong convexity and nearly very convexity by using the dual concept of S and WS points,related to the so-called Rolewicz’s property(α).We give a characterization of those points in terms of continuity properties of the identity mapping.The connection between these two geometric properties is established,and finally an application to approximative compactness is given.
基金supported by National Natural Science Foundation of China(11601267)
文摘In this paper, the so-called(p,Ф)-Carleson measure is introduced and the rela-tionship between vector-valued martingales in the general Campanato spaces Lp,Ф(X) and the (p, Ф)-Carleson measures is investigated. Specifically, it is proved that for q ∈ [2, ∞), the measure d# :-=││ dfk││^qdP dm is a (q, Ф)-Carleson measure on Ω × N for every f ∈ Lq,Ф(X) if and only if X has an equivalent norm which is q-uniformly convex; while for p C (1, 2], the measure dμ :=││dfk││^pP dm is a (p, Ф)-Carleson measure on Ω ×N implies that f ∈ Lp,Ф(X) if and only if X admits an equivalent norm which is p-uniformly smooth. This result extends an earlier result in the literature from BMO spaces to general Campanato spaces.
文摘We study the single projection algorithm of Tseng for solving a variational inequality problem in a 2-uniformly convex Banach space.The underline cost function of the variational inequality is assumed to be monotone and Lipschitz continuous.A weak convergence result is obtained under reasonable assumptions on the variable step-sizes.We also give the strong convergence result for when the underline cost function is strongly monotone and Lipchitz continuous.For this strong convergence case,the proposed method does not require prior knowledge of the modulus of strong monotonicity and the Lipschitz constant of the cost function as input parameters,rather,the variable step-sizes are diminishing and non-summable.The asymptotic estimate of the convergence rate for the strong convergence case is also given.For completeness,we give another strong convergence result using the idea of Halpern iteration when the cost function is monotone and Lipschitz continuous and the variable step-sizes are bounded by the inverse of the Lipschitz constant of the cost function.Finally,we give an example of a contact problem where our proposed method can be applied.
基金Supported by the Natural Science Foundation of the Educational Dept.of Zhejiang Province(20020868).
文摘This paper studies the convergence of the sequence defined by x0 ∈ C, xn+l =αnu+(1-αn)Txn, n=0, 1,2,..., where 0 ≤αn ≤ 1, limn→∞ αn = 0, ∑n=0^∞ αn = ∞, and T is a nonexpansive mapping from a nonempty closed convex subset C of a Banach space X into itself. The iterative sequence {xn} converges strongly to a fixed point of T in the case when X is a uniformly convex Banach space with a uniformly Gateaux differentiable norm or a uniformly smooth Banach space only. The results presented in this paper extend and improve some recent results.
文摘The existence of common fixed points for a pair of Lipschitzian mappings in Banach spaces is proved. By using this result, some common fixed point theorems are also established for these mappings in Hilbert spaces, in L p spaces, in Hardy spaces H p, and in Sobolev spaces H r,p , for 1<p<+∞ and r≥0.
基金supported by the Scientific Research Fund of Sichuan Normal University(No.11ZDL01)the Sichuan Province Leading Academic Discipline Project(No.SZD0406)
文摘A new system of general nonlinear variational inclusions is introduced and studied in Banach spaces. An iterative algorithm is developed and analyzed by use of the resolvent operator techniques to find the approximate solutions of the system of general nonlinear variational inclusions involving different nonlinear operators in uniformly smooth Banach spaces.