Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection ...Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection in sliding window selection and seldom incorporate weather forecast data for displacement prediction,while a single structural model cannot handle input sequences of different lengths at the same time.In order to solve these limitations,in this study,a new approach is proposed that utilizes weather forecast data and incorporates the maximum information coefficient(MIC),long short-term memory network(LSTM),and attention mechanism to establish a teacher-student coupling model with parallel structure for short-term landslide displacement prediction.Through MIC,a suitable input sequence length is selected for the LSTM model.To investigate the influence of rainfall on landslides during different seasons,a parallel teacher-student coupling model is developed that is able to learn sequential information from various time series of different lengths.The teacher model learns sequence information from rainfall intensity time series while incorporating reliable short-term weather forecast data from platforms such as China Meteorological Administration(CMA)and Reliable Prognosis(https://rp5.ru)to improve the model’s expression capability,and the student model learns sequence information from other time series.An attention module is then designed to integrate different sequence information to derive a context vector,representing seasonal temporal attention mode.Finally,the predicted displacement is obtained through a linear layer.The proposed method demonstrates superior prediction accuracies,surpassing those of the support vector machine(SVM),LSTM,recurrent neural network(RNN),temporal convolutional network(TCN),and LSTM-Attention models.It achieves a mean absolute error(MAE)of 0.072 mm,root mean square error(RMSE)of 0.096 mm,and pearson correlation coefficients(PCCS)of 0.85.Additionally,it exhibits enhanced prediction stability and interpretability,rendering it an indispensable tool for landslide disaster prevention and mitigation.展开更多
This paper presents the use of a student model to improve the explanations provided by an intelligent tu- toring system,namely SimpleQuestl,in the domain of electronics.The method of overlay modelling is adopted to bu...This paper presents the use of a student model to improve the explanations provided by an intelligent tu- toring system,namely SimpleQuestl,in the domain of electronics.The method of overlay modelling is adopted to build the student model.The diagnosis is based on the comparison of the behavinurs of the student and the ex- pert.The student model is consulted by the “explainer” and “debugging” procedures in order to re-order the sequence of the explanation.展开更多
It focuses on that students must be developed the ability to solve the practical problem by building the mathematics models and the ability to combine the theory with the practice. It also states that students must be...It focuses on that students must be developed the ability to solve the practical problem by building the mathematics models and the ability to combine the theory with the practice. It also states that students must be improved the learning interests and practical experience.展开更多
In this study, the mathematical models of dynamics of student populations in the university departments are formulated. As a case study, we employ the data of registration section from Department of Mathematics, Facul...In this study, the mathematical models of dynamics of student populations in the university departments are formulated. As a case study, we employ the data of registration section from Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok (KMUTNB), Thailand, from calendar year 2006 to 2010. Using regression analysis, descriptive model and explanatory model are derived. The descriptive model is linear with R2 = 0.8864. Using log-transformation, the explanatory model gives the nonlinear approximation with R2 = 0.8293. The model predicts that the number of students of Department of Mathematics, KMUTNB has a tendency to linearly increase with slope of 20 with 95% CI (6.8417, 33.1583). The application of the models in educational management is discussed.展开更多
基金This research work is supported by Sichuan Science and Technology Program(Grant No.2022YFS0586)the National Key R&D Program of China(Grant No.2019YFC1509301)the National Natural Science Foundation of China(Grant No.61976046).
文摘Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection in sliding window selection and seldom incorporate weather forecast data for displacement prediction,while a single structural model cannot handle input sequences of different lengths at the same time.In order to solve these limitations,in this study,a new approach is proposed that utilizes weather forecast data and incorporates the maximum information coefficient(MIC),long short-term memory network(LSTM),and attention mechanism to establish a teacher-student coupling model with parallel structure for short-term landslide displacement prediction.Through MIC,a suitable input sequence length is selected for the LSTM model.To investigate the influence of rainfall on landslides during different seasons,a parallel teacher-student coupling model is developed that is able to learn sequential information from various time series of different lengths.The teacher model learns sequence information from rainfall intensity time series while incorporating reliable short-term weather forecast data from platforms such as China Meteorological Administration(CMA)and Reliable Prognosis(https://rp5.ru)to improve the model’s expression capability,and the student model learns sequence information from other time series.An attention module is then designed to integrate different sequence information to derive a context vector,representing seasonal temporal attention mode.Finally,the predicted displacement is obtained through a linear layer.The proposed method demonstrates superior prediction accuracies,surpassing those of the support vector machine(SVM),LSTM,recurrent neural network(RNN),temporal convolutional network(TCN),and LSTM-Attention models.It achieves a mean absolute error(MAE)of 0.072 mm,root mean square error(RMSE)of 0.096 mm,and pearson correlation coefficients(PCCS)of 0.85.Additionally,it exhibits enhanced prediction stability and interpretability,rendering it an indispensable tool for landslide disaster prevention and mitigation.
文摘This paper presents the use of a student model to improve the explanations provided by an intelligent tu- toring system,namely SimpleQuestl,in the domain of electronics.The method of overlay modelling is adopted to build the student model.The diagnosis is based on the comparison of the behavinurs of the student and the ex- pert.The student model is consulted by the “explainer” and “debugging” procedures in order to re-order the sequence of the explanation.
文摘It focuses on that students must be developed the ability to solve the practical problem by building the mathematics models and the ability to combine the theory with the practice. It also states that students must be improved the learning interests and practical experience.
文摘In this study, the mathematical models of dynamics of student populations in the university departments are formulated. As a case study, we employ the data of registration section from Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok (KMUTNB), Thailand, from calendar year 2006 to 2010. Using regression analysis, descriptive model and explanatory model are derived. The descriptive model is linear with R2 = 0.8864. Using log-transformation, the explanatory model gives the nonlinear approximation with R2 = 0.8293. The model predicts that the number of students of Department of Mathematics, KMUTNB has a tendency to linearly increase with slope of 20 with 95% CI (6.8417, 33.1583). The application of the models in educational management is discussed.