The error-sum function of alternating Lǖroth series is introduced, which, to some extent, discerns the superior or not of an expansion comparing to other expansions. Some elementary properties of this function are st...The error-sum function of alternating Lǖroth series is introduced, which, to some extent, discerns the superior or not of an expansion comparing to other expansions. Some elementary properties of this function are studied. Also, the Hausdorff dimension of graph of such function is determined.展开更多
The error-sum function of alternating Sylvester series is introduced. Some elementary properties of this function are studied. Also, the hausdorff dimension of the graph of such function is determined.
This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specific...This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specifically the Robin inequality and the Riemann hypothesis. The exploration of using invariant properties of these functions to derive insights into twin primes and sequential primes is a potentially innovative concept that deserves careful consideration by the mathematical community.展开更多
In this article, some facts of the value distribution theory for meromorphic func- tions with maximal deficiency sum in the plane will be considered in the punctured plane, and also the relationship between the defici...In this article, some facts of the value distribution theory for meromorphic func- tions with maximal deficiency sum in the plane will be considered in the punctured plane, and also the relationship between the deficiency of meromorphic function in the punctured plane and that of their derivatives is studied.展开更多
This paper presents a study on the motion response of a tension-leg platform(TLP) under first-and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave fo...This paper presents a study on the motion response of a tension-leg platform(TLP) under first-and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function(QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.展开更多
寻找求sum from i=1 to n i^k值的方法,研究得不浅[1-9]都有介绍。这里仅用微积分的最基本知识推出较简便的自然数幂之和的求值递推公式:S_n^(k+1)=(k+1)[integral from n=0 to n(S^k(x)dx)-n integral from n=-1 to 0 (S^k(x)ds)。其中...寻找求sum from i=1 to n i^k值的方法,研究得不浅[1-9]都有介绍。这里仅用微积分的最基本知识推出较简便的自然数幂之和的求值递推公式:S_n^(k+1)=(k+1)[integral from n=0 to n(S^k(x)dx)-n integral from n=-1 to 0 (S^k(x)ds)。其中S^k(x)是S_n^k=sum from i=1 to i^k的派生函数。展开更多
Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursi...Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursion relations for calculating Bernoulli polynomials and numbers, new formulae for obtaining power sums of entire and complex numbers. Then by the change of arguments from z into Z = z(z-1) and n into λ which is the 1<sup>st</sup> order power sum we obtain the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. Practically we give tables for calculating in easiest possible manners, the Bernoulli numbers, polynomials, the general powers sums.展开更多
Using thermal entangled state representation,we solve the master equation of a diffusive anharmonic oscillator(AHO) to obtain the exact time evolution formula for the density operator in the infinitive operator-sum ...Using thermal entangled state representation,we solve the master equation of a diffusive anharmonic oscillator(AHO) to obtain the exact time evolution formula for the density operator in the infinitive operator-sum representation.We present a new evolution formula of the Wigner function(WF) for any initial state of the diffusive AHO by converting the WF calculation into an overlap between two pure states in an enlarged Fock space.It is found that this formula is very convenient in investigating the WF's evolution of any known initial state.As applications,this formula is used to obtain the evolution of the WF for a coherent state and the evolution of the photon-number distribution of diffusive AHOs.展开更多
In this case study, we would like to illustrate the utility of characteristic functions, using an example of a sample statistic defined for samples from Cauchy distribution. The derivation of the corresponding asympto...In this case study, we would like to illustrate the utility of characteristic functions, using an example of a sample statistic defined for samples from Cauchy distribution. The derivation of the corresponding asymptotic probability density function is based on [1], elaborating and expanding the individual steps of their presentation, and including a small extension;our reason for such a plagiarism is to make the technique, its mathematical tools and ingenious arguments available to the widest possible audience.展开更多
Let p≥5 be a prime. For any integer h, the Hardy sum is defined by H(h,p)=sum((-1)^(j+1+[(hj)/p]))from (p-1) to (j=1) which is related to the classical Dedekind sum. The mean values of the Hardy sum in short interval...Let p≥5 be a prime. For any integer h, the Hardy sum is defined by H(h,p)=sum((-1)^(j+1+[(hj)/p]))from (p-1) to (j=1) which is related to the classical Dedekind sum. The mean values of the Hardy sum in short intervals are studied by using the mean value theorems of Dirichlet L-functions.展开更多
文摘The error-sum function of alternating Lǖroth series is introduced, which, to some extent, discerns the superior or not of an expansion comparing to other expansions. Some elementary properties of this function are studied. Also, the Hausdorff dimension of graph of such function is determined.
文摘The error-sum function of alternating Sylvester series is introduced. Some elementary properties of this function are studied. Also, the hausdorff dimension of the graph of such function is determined.
文摘This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specifically the Robin inequality and the Riemann hypothesis. The exploration of using invariant properties of these functions to derive insights into twin primes and sequential primes is a potentially innovative concept that deserves careful consideration by the mathematical community.
基金supported by the National Natural Science Foundation of China(11201395)supported by the Science Foundation of Educational Commission of Hubei Province(D20132804)supported by the Science Foundation of Jiangxi Province(20122BAB201006)
文摘In this article, some facts of the value distribution theory for meromorphic func- tions with maximal deficiency sum in the plane will be considered in the punctured plane, and also the relationship between the deficiency of meromorphic function in the punctured plane and that of their derivatives is studied.
基金supported by the National Natural Science Foundation of China(Nos.51239008 and 51279130)
文摘This paper presents a study on the motion response of a tension-leg platform(TLP) under first-and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function(QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.
文摘寻找求sum from i=1 to n i^k值的方法,研究得不浅[1-9]都有介绍。这里仅用微积分的最基本知识推出较简便的自然数幂之和的求值递推公式:S_n^(k+1)=(k+1)[integral from n=0 to n(S^k(x)dx)-n integral from n=-1 to 0 (S^k(x)ds)。其中S^k(x)是S_n^k=sum from i=1 to i^k的派生函数。
文摘Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursion relations for calculating Bernoulli polynomials and numbers, new formulae for obtaining power sums of entire and complex numbers. Then by the change of arguments from z into Z = z(z-1) and n into λ which is the 1<sup>st</sup> order power sum we obtain the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. Practically we give tables for calculating in easiest possible manners, the Bernoulli numbers, polynomials, the general powers sums.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11147009 and 11244005)the Natural Science Foundation of Shandong Province,China (Grant No. ZR2012AM004)
文摘Using thermal entangled state representation,we solve the master equation of a diffusive anharmonic oscillator(AHO) to obtain the exact time evolution formula for the density operator in the infinitive operator-sum representation.We present a new evolution formula of the Wigner function(WF) for any initial state of the diffusive AHO by converting the WF calculation into an overlap between two pure states in an enlarged Fock space.It is found that this formula is very convenient in investigating the WF's evolution of any known initial state.As applications,this formula is used to obtain the evolution of the WF for a coherent state and the evolution of the photon-number distribution of diffusive AHOs.
文摘In this case study, we would like to illustrate the utility of characteristic functions, using an example of a sample statistic defined for samples from Cauchy distribution. The derivation of the corresponding asymptotic probability density function is based on [1], elaborating and expanding the individual steps of their presentation, and including a small extension;our reason for such a plagiarism is to make the technique, its mathematical tools and ingenious arguments available to the widest possible audience.
基金Supported by the National Natural Science Foundation of China(11571277)Supported by the Science and Technology Program of Shaanxi Province(2016GY-077)
文摘Let p≥5 be a prime. For any integer h, the Hardy sum is defined by H(h,p)=sum((-1)^(j+1+[(hj)/p]))from (p-1) to (j=1) which is related to the classical Dedekind sum. The mean values of the Hardy sum in short intervals are studied by using the mean value theorems of Dirichlet L-functions.