In previous papers, we proposed the important Ztransformations and obtained general solutions to a large number of linear and quasi-linear partial differential equations for the first time. In this paper, we will use ...In previous papers, we proposed the important Ztransformations and obtained general solutions to a large number of linear and quasi-linear partial differential equations for the first time. In this paper, we will use the Z1transformation to get the general solutions of some nonlinear partial differential equations for the first time, and use the general solutions to obtain the exact solutions of some typical definite solution problems.展开更多
In this paper,we study the existence of pseudo S-asymptotically ω-periodic mild solutions of abstract partial neutral differential equations in Banach spaces.By using the principle of Banach contractive mapping,the e...In this paper,we study the existence of pseudo S-asymptotically ω-periodic mild solutions of abstract partial neutral differential equations in Banach spaces.By using the principle of Banach contractive mapping,the existence and uniqueness of pseudo S-asymptotically ω-periodic mild solutions of abstract partial neutral differential equations are obtained.To illustrate the ab-stract result,a concrete example is given.展开更多
To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem...To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Two oscillatory criteria of solutions for systems of parabolic differential equations with deviating arguments are obtained.展开更多
In this paper, sane sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the un...The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the unique solvability result for the first-order linear hyperbolic PDE are used to obtain some sufficient conditions for ensuring the finite-time consensus of the leaderless and leader-following MASs driven by first-order linear hyperbolic PDEs.Finally,two numerical examples are provided to verify the effectiveness of the proposed methods.展开更多
Data-driven partial differential equation identification is a potential breakthrough to solve the lack of physical equations in complex dynamic systems.However,existing equation identification methods still cannot eff...Data-driven partial differential equation identification is a potential breakthrough to solve the lack of physical equations in complex dynamic systems.However,existing equation identification methods still cannot effectively identify equations from multivariable complex systems.In this work,we combine physical constraints such as dimension and direction of equation with data-driven method,and successfully identify the Navier-Stocks equations from the flow field data of Karman vortex street.This method provides an effective approach to identify partial differential equations of multivariable complex systems.展开更多
A theorem of solving a system of linear non-homogeneous differential equations through integrating and adding its basic solutions is put forward and proved, the mathematical role and physical nature of the theorem is ...A theorem of solving a system of linear non-homogeneous differential equations through integrating and adding its basic solutions is put forward and proved, the mathematical role and physical nature of the theorem is interpreted briefly. As an example, the theorem is applied to solve the problem of thermo-force bending of a thick plate.展开更多
A symbolic computation method to decide whether the solutions to the system Of linear partial differential equation is complete via using differential algebra and characteristic set is presented. This is a mechanizati...A symbolic computation method to decide whether the solutions to the system Of linear partial differential equation is complete via using differential algebra and characteristic set is presented. This is a mechanization method, and it can be carried out on the computer in the Maple environment.展开更多
In this paper, the various problems associaled with the optimal control of systemsgoverned by partial differential equations are introduced by using singularly perturbedmethods for analysis based on stale equations,...In this paper, the various problems associaled with the optimal control of systemsgoverned by partial differential equations are introduced by using singularly perturbedmethods for analysis based on stale equations, or the cost funtction and also stateequations defined in perturbed domains.展开更多
In this paper, some sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and ...In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and the system of Hirota-Satsuma coupled KdV. In addition, the results obtained from Laplace decomposition method (LDM) and Pade approximant are compared with corresponding exact analytical solutions.展开更多
In this paper, we shall be concerned with the numerical solution of parabolic equations in one space variable and the time variable t. We expand Taylor series to derive a higher-order approximation for U<sub>t&l...In this paper, we shall be concerned with the numerical solution of parabolic equations in one space variable and the time variable t. We expand Taylor series to derive a higher-order approximation for U<sub>t</sub>. We begin with the simplest model problem, for heat conduction in a uniform medium. For this model problem, an explicit difference method is very straightforward in use, and the analysis of its error is easily accomplished by the use of a maximum principle. As we shall show, however, the numerical solution becomes unstable unless the time step is severely restricted, so we shall go on to consider other, more elaborate, numerical methods which can avoid such a restriction. The additional complication in the numerical calculation is more than offset by the smaller number of time steps needed. We then extend the methods to problems with more general boundary conditions, then to more general linear parabolic equations. Finally, we shall discuss the more difficult problem of the solution of nonlinear equations.展开更多
The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory in...The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory infections,such as influenza-like illness(ILI).Accurate prediction models for ILI cases are crucial in enabling governments to implement necessary measures and persuade individuals to adopt personal precautions against the disease.This paper aims to provide a forecasting model for ILI cases with actual cases.We propose a specific model utilizing the partial differential equation(PDE)that will be developed and validated using real-world data obtained from the Chinese National Influenza Center.Our model combines the effects of transboundary spread among regions in China mainland and human activities’impact on ILI transmission dynamics.The simulated results demonstrate that our model achieves excellent predictive performance.Additionally,relevant factors influencing the dissemination are further examined in our analysis.Furthermore,we investigate the effectiveness of travel restrictions on ILI cases.Results can be used to utilize to mitigate the spread of disease.展开更多
In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, exi...In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables.展开更多
Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational...Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods.展开更多
Photonic computing has recently become an interesting paradigm for high-speed calculation of computing processes using light-matter interactions.Here,we propose and study an electromagnetic wave-based structure with t...Photonic computing has recently become an interesting paradigm for high-speed calculation of computing processes using light-matter interactions.Here,we propose and study an electromagnetic wave-based structure with the ability to calculate the solution of partial differential equations(PDEs)in the form of the Helmholtz wave equation,∇^(2)(x,y)T+k^(2)(x,y)=0,with k as the wavenumber.To do this,we make use of a network of interconnected waveguides filled with dielectric inserts.In so doing,it is shown how the proposed network can mimic the response of a network of T-circuit elements formed by two series and a parallel impedances,i.e.,the waveguide network effectively behaves as a metatronic network.An in-depth theoretical analysis of the proposed metatronic structure is presented,showing how the governing equation for the currents and impedances of the metatronic network resembles that of the finite difference representation of the Helmholtz wave equation.Different studies are then discussed including the solution of PDEs for Dirichlet and open boundary value problems,demonstrating how the proposed metatronic-based structure has the ability to calculate their solutions.展开更多
In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equat...In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.展开更多
In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differen...In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.展开更多
The method of lines is applied to the boundary-value problem for third order partial differential equation. Explicit expression and order of convergence for the approximate solution are obtained.
In this paper we present a proposal using Legendre polynomials approximation for the solution of the second order linear partial differential equations. Our approach consists of reducing the problem to a set of linear...In this paper we present a proposal using Legendre polynomials approximation for the solution of the second order linear partial differential equations. Our approach consists of reducing the problem to a set of linear equations by expanding the approximate solution in terms of shifted Legendre polynomials with unknown coefficients. The performance of presented method has been compared with other methods, namely Sinc-Galerkin, quadratic spline collocation and LiuLin method. Numerical examples show better accuracy of the proposed method. Moreover, the computation cost decreases at least by a factor of 6 in this method.展开更多
文摘In previous papers, we proposed the important Ztransformations and obtained general solutions to a large number of linear and quasi-linear partial differential equations for the first time. In this paper, we will use the Z1transformation to get the general solutions of some nonlinear partial differential equations for the first time, and use the general solutions to obtain the exact solutions of some typical definite solution problems.
基金Supported by the National Natural Science Foundation of China(11226337)the Science and Technology Research Projects of Henan Education Committee(22B110017).
文摘In this paper,we study the existence of pseudo S-asymptotically ω-periodic mild solutions of abstract partial neutral differential equations in Banach spaces.By using the principle of Banach contractive mapping,the existence and uniqueness of pseudo S-asymptotically ω-periodic mild solutions of abstract partial neutral differential equations are obtained.To illustrate the ab-stract result,a concrete example is given.
文摘To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Two oscillatory criteria of solutions for systems of parabolic differential equations with deviating arguments are obtained.
文摘In this paper, sane sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
基金the National Natural Science Foundation of China(Nos.11671282 and 12171339)。
文摘The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the unique solvability result for the first-order linear hyperbolic PDE are used to obtain some sufficient conditions for ensuring the finite-time consensus of the leaderless and leader-following MASs driven by first-order linear hyperbolic PDEs.Finally,two numerical examples are provided to verify the effectiveness of the proposed methods.
基金supported by the National Natural Science Foundation of China(No.92152301).
文摘Data-driven partial differential equation identification is a potential breakthrough to solve the lack of physical equations in complex dynamic systems.However,existing equation identification methods still cannot effectively identify equations from multivariable complex systems.In this work,we combine physical constraints such as dimension and direction of equation with data-driven method,and successfully identify the Navier-Stocks equations from the flow field data of Karman vortex street.This method provides an effective approach to identify partial differential equations of multivariable complex systems.
文摘A theorem of solving a system of linear non-homogeneous differential equations through integrating and adding its basic solutions is put forward and proved, the mathematical role and physical nature of the theorem is interpreted briefly. As an example, the theorem is applied to solve the problem of thermo-force bending of a thick plate.
文摘A symbolic computation method to decide whether the solutions to the system Of linear partial differential equation is complete via using differential algebra and characteristic set is presented. This is a mechanization method, and it can be carried out on the computer in the Maple environment.
文摘In this paper, the various problems associaled with the optimal control of systemsgoverned by partial differential equations are introduced by using singularly perturbedmethods for analysis based on stale equations, or the cost funtction and also stateequations defined in perturbed domains.
文摘In this paper, some sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
文摘In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and the system of Hirota-Satsuma coupled KdV. In addition, the results obtained from Laplace decomposition method (LDM) and Pade approximant are compared with corresponding exact analytical solutions.
文摘In this paper, we shall be concerned with the numerical solution of parabolic equations in one space variable and the time variable t. We expand Taylor series to derive a higher-order approximation for U<sub>t</sub>. We begin with the simplest model problem, for heat conduction in a uniform medium. For this model problem, an explicit difference method is very straightforward in use, and the analysis of its error is easily accomplished by the use of a maximum principle. As we shall show, however, the numerical solution becomes unstable unless the time step is severely restricted, so we shall go on to consider other, more elaborate, numerical methods which can avoid such a restriction. The additional complication in the numerical calculation is more than offset by the smaller number of time steps needed. We then extend the methods to problems with more general boundary conditions, then to more general linear parabolic equations. Finally, we shall discuss the more difficult problem of the solution of nonlinear equations.
基金supported by the National Natural Science Foundation of China(Grant No.62373197)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX18_0892).
文摘The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory infections,such as influenza-like illness(ILI).Accurate prediction models for ILI cases are crucial in enabling governments to implement necessary measures and persuade individuals to adopt personal precautions against the disease.This paper aims to provide a forecasting model for ILI cases with actual cases.We propose a specific model utilizing the partial differential equation(PDE)that will be developed and validated using real-world data obtained from the Chinese National Influenza Center.Our model combines the effects of transboundary spread among regions in China mainland and human activities’impact on ILI transmission dynamics.The simulated results demonstrate that our model achieves excellent predictive performance.Additionally,relevant factors influencing the dissemination are further examined in our analysis.Furthermore,we investigate the effectiveness of travel restrictions on ILI cases.Results can be used to utilize to mitigate the spread of disease.
文摘In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables.
基金supported by the National Key R&D Program of China under Grant No.2021ZD0110400.
文摘Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods.
基金support of the Leverhulme Trust under the Leverhulme Trust Research Project Grant scheme(Grant No.RPG-2020-316)V.P-P.and R.G.M would like to thank the support from the Engineering and Physical Sciences Research Council(EPSRC)under the EPSRC DTP PhD scheme(Grant No.EP/T517914/1).
文摘Photonic computing has recently become an interesting paradigm for high-speed calculation of computing processes using light-matter interactions.Here,we propose and study an electromagnetic wave-based structure with the ability to calculate the solution of partial differential equations(PDEs)in the form of the Helmholtz wave equation,∇^(2)(x,y)T+k^(2)(x,y)=0,with k as the wavenumber.To do this,we make use of a network of interconnected waveguides filled with dielectric inserts.In so doing,it is shown how the proposed network can mimic the response of a network of T-circuit elements formed by two series and a parallel impedances,i.e.,the waveguide network effectively behaves as a metatronic network.An in-depth theoretical analysis of the proposed metatronic structure is presented,showing how the governing equation for the currents and impedances of the metatronic network resembles that of the finite difference representation of the Helmholtz wave equation.Different studies are then discussed including the solution of PDEs for Dirichlet and open boundary value problems,demonstrating how the proposed metatronic-based structure has the ability to calculate their solutions.
文摘In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.
基金Supported by the Natural Science Foundation of China(10471086)Supported by the Science Research Foundation of Department of Education of Hunan Province(07C164)
文摘In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.
文摘The method of lines is applied to the boundary-value problem for third order partial differential equation. Explicit expression and order of convergence for the approximate solution are obtained.
文摘In this paper we present a proposal using Legendre polynomials approximation for the solution of the second order linear partial differential equations. Our approach consists of reducing the problem to a set of linear equations by expanding the approximate solution in terms of shifted Legendre polynomials with unknown coefficients. The performance of presented method has been compared with other methods, namely Sinc-Galerkin, quadratic spline collocation and LiuLin method. Numerical examples show better accuracy of the proposed method. Moreover, the computation cost decreases at least by a factor of 6 in this method.