Three kinds of commercial activated carbons, such as Norit RB1, Monolith and Chemviron activated carbons, were used as adsorbents for adsorption of dibenzofuran. The average pore size and specific surface area of thes...Three kinds of commercial activated carbons, such as Norit RB1, Monolith and Chemviron activated carbons, were used as adsorbents for adsorption of dibenzofuran. The average pore size and specific surface area of these activated carbons were measured. Temperature Programmed Desorption (TPD) experiments were conducted to measure the TPD curves of dibenzofuran on the activated carbons, and then the activation energy for desorption of dibenzofuran on the activated carbons was estimated. The results showed that the Chemviron and the Norit RB1 activated carbon maintained higher specific surface area and larger micropore pore volume in comparison with the Monolith activated carbon, and the activation energy for the desorption of dibenzofuran on these two activated carbons was higher than that on the Monolith activated carbon. The smaller the pore of the activated carbon was, the higher the activated energy of dibenzofuran desorption was.展开更多
In this paper, six kinds of activated carbons such as Ag+-activated carbon, Cu2+- activated carbon, Fe3+- activated carbon, activated carbon, Ba2+- activated carbon and Ca2+- activated carbon were prepared. The model ...In this paper, six kinds of activated carbons such as Ag+-activated carbon, Cu2+- activated carbon, Fe3+- activated carbon, activated carbon, Ba2+- activated carbon and Ca2+- activated carbon were prepared. The model for estimating activated energy of desorption was established. Temperature-programmed desorption (TPD) experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons. Results showed that the activation energy for the desorption of n-hexanol on the Ag+- activated carbon, the Cu2+- activated carbon and the Fe3+- activated carbon were higher than those of n-hexanol on the activated carbon, the Ca2+- activated carbon and the Ba2+- activated carbon.展开更多
Porous carbon materials have been widely used for the removal of SO_(2) from flue gas.The main objective of this work is to clarify the effects of adsorption temperature on SO_(2) adsorption and desorption energy cons...Porous carbon materials have been widely used for the removal of SO_(2) from flue gas.The main objective of this work is to clarify the effects of adsorption temperature on SO_(2) adsorption and desorption energy consumption.Coal-based porous powdered activated coke(PPAC)prepared in the drop-tube reactor was used in this study.The N_(2) adsorption measurements and Fourier transform infrared spectrometer analysis show that PPAC exhibits a developed pore structure and rich functional groups.The experimental results show that with a decrease in adsorption temperature in the range of 50–150℃,the adsorption capacity of SO_(2) increases linearly;meanwhile,the adsorption capacity of H_(2)O increases,resulting in the increase in desorption energy consumption per unit mass of adsorbent.The processes of SO_(2) and H_(2)O desorption were determined by the temperature-programmed desorption test,and the desorption energies for each species were calculated.Considering the energy consumption per unit of desorption and the total amount of adsorbent,the optimal adsorption temperature yielding the minimum total energy consumption of regeneration is calculated.This study systematically demonstrates the effect of adsorption temperature on the adsorption–desorption process,providing a basis for energy saving and emission reduction in desulfurization system design.展开更多
The amorphous Mg0.9Ti0.1Ni1?xPdx (x=0, 0.05, 0.1, 0.15) hydrogen storage alloys were prepared by mechanical alloying. The hydrogen desorption kinetics of the electrode alloys were studied by potentiostatic discharge e...The amorphous Mg0.9Ti0.1Ni1?xPdx (x=0, 0.05, 0.1, 0.15) hydrogen storage alloys were prepared by mechanical alloying. The hydrogen desorption kinetics of the electrode alloys were studied by potentiostatic discharge experiments and linear polarization measurements. The experimental results show that the three-dimensional diffusion model dominates the hydrogen desorption process of the electrode alloys. The rate constants of hydrogen desorption reaction, which are obtained from a linear fitting of the model equation, increase with temperature. The activation energies of hydrogen desorption were calculated according to the Arrhenius equation. The calculated values were 46.2, 24.29, 33.4 and 34.95 kJ/mol for x=0, 0.05, 0.1 and 0.15 of Mg0.9Ti0.1Ni1?xPdx (x=0, 0.05, 0.1, 0.15) electrode alloys, respectively. The exchange current densities were determined by the linear polarization experiments. The variation of exchange current densities with Pd content in the alloy electrodes agrees with that of activation energies with Pd content.展开更多
In this work,the effect of the textural property of activated carbons on desorption activation energy and adsorption capacity for benzothiophene(BT)was investigated.BET surface areas and the textural parameters of thr...In this work,the effect of the textural property of activated carbons on desorption activation energy and adsorption capacity for benzothiophene(BT)was investigated.BET surface areas and the textural parameters of three kinds of the activated carbons,namely SY-6,SY-13 and SY-19,were measured with an ASAP 2010 instrument.The desorption activation energies of BT on the activated carbons were determined by temperature-programmed desorption(TPD).Static adsorption experiments were carried out to determine the isotherms of BT on the activated carbons.The influence of the textural property of the activated carbons on desorption activation energy and the adsorption capacity for BT was discussed.Results showed that the BET surface areas of the activated carbons,SY-6,SY-13 and SY-19 were 1106,1070 and 689 m2·g^(-1),respectively,and their average pore diameters were 1.96,2.58 and 2.16 nm,respectively.The TPD results indicated that the desorption activation energy of BT on the activated carbons,SY-6,SY-19 and SY-13 were 58.84,53.02 and 42.57 KJ/mol,respectively.The isotherms showed that the amount of BT adsorbed on the activated carbons followed the order of SY-6>SY-19>SY-13.The smaller the average pore diameter of the activated carbon,the stronger its adsorption for BT and the higher the activation energy required for BT desorption on its surface.The Freundlich adsorption isotherm model can be properly used to formulate the adsorption behavior of BT on the activated carbons.展开更多
This work mainly involves the study of effect of relative humidity on adsorption of formaldehyde on the activated carbons modified with organosilane solution. Modification of activated carbons was carded out by impreg...This work mainly involves the study of effect of relative humidity on adsorption of formaldehyde on the activated carbons modified with organosilane solution. Modification of activated carbons was carded out by impregnating activated carbon with organosilane/methanol-containing solutions. The breakthrough curves of formaldehyde in the packed beds of original and modified activated carbons were measured, respectively, at relative humidity of 30%, 60%, and 80%. Temperature-programmed desorption (TPD) experiments were used to estimate the activation energy for desorption of formaldehyde from the activated carbon. Results showed that the relative humidity had strongly influence on breakthrough curves of formaldehyde in the packed beds. The higher the relative humidity of gas mixtures through the packed beds was, the smaller the breakthrough time of formaldehyde became. The use of organosilane compounds to modify surfaces of the activated carbon can enhance the interaction between formaldehyde and the surfaces, and as a result, the breakthrough times of formaldehyde in the packed beds of the modified activated carbon were longer than that in the packed bed of the unmodified activated carbon.展开更多
Using a walnut shellas a carbon source and ZnCl_2 as an activating agent,we resolved the temperature gradient problems of activated carbon in the microwave desorption process.An appropriate amount of silicon carbide w...Using a walnut shellas a carbon source and ZnCl_2 as an activating agent,we resolved the temperature gradient problems of activated carbon in the microwave desorption process.An appropriate amount of silicon carbide was added to prepare the composite activated carbon with high thermalconductivity while developing VOC adsorption-microwave regeneration technology.The experimentalresults show that the coefficient of thermalconductivity of SiC-AC is three times as much as those of AC and SY-6.When microwave power was 480 W in its microwave desorption,the temperature of the bed thermaldesorption was 10 ℃ to 30 ℃ below that of normalactivated carbon prepared in our laboratory.The toluene desorption activation energy was 16.05 k J·mol^(-1),which was 15% less than the desorption activation energy of commercialactivated carbon.This study testified that the process could maintain its high adsorption and regeneration desorption performances.展开更多
The breakthrough curves of benzene and water on modified activated carbons(ACs) were investigated.Temperature-programmed desorption(TPD) experiments were conducted to measure the TPD curves of benzene and water on...The breakthrough curves of benzene and water on modified activated carbons(ACs) were investigated.Temperature-programmed desorption(TPD) experiments were conducted to measure the TPD curves of benzene and water on modified and unmodified ACs and to estimate the activation energy for the desorption of benzene on the modified ACs.Starting with unmodified ACs,two modified ACs were prepared by using two different types of silane,designated by KH560 and 1706.The results showed that the activation energy for the desorption of benzene on KH560/AC and 1706/AC was higher than that on unmodified AC.In addition,the activation energy for the desorption of water on KH560/AC and 1706/AC was lower than that on unmodified AC.The breakthrough curves of benzene obtained from the experimental observations under different humidity conditions were compared with the results of the TPD experiments.The results show that the modified ACs are less affected by water,whereas the unmodified ACs are more affected by water,indicating that surface modification by organosilane compounds can improve the adsorption of benzene on the activated carbo,which weakens the adsorption of water.展开更多
基金National Natural Science Foundation of China (No. 20176012) PRA project (E01-01) the Natural Science Foundation of Guangdong Province
文摘Three kinds of commercial activated carbons, such as Norit RB1, Monolith and Chemviron activated carbons, were used as adsorbents for adsorption of dibenzofuran. The average pore size and specific surface area of these activated carbons were measured. Temperature Programmed Desorption (TPD) experiments were conducted to measure the TPD curves of dibenzofuran on the activated carbons, and then the activation energy for desorption of dibenzofuran on the activated carbons was estimated. The results showed that the Chemviron and the Norit RB1 activated carbon maintained higher specific surface area and larger micropore pore volume in comparison with the Monolith activated carbon, and the activation energy for the desorption of dibenzofuran on these two activated carbons was higher than that on the Monolith activated carbon. The smaller the pore of the activated carbon was, the higher the activated energy of dibenzofuran desorption was.
基金The National Natural Scientific Foundation of China. (Project grant No. 29936100)
文摘In this paper, six kinds of activated carbons such as Ag+-activated carbon, Cu2+- activated carbon, Fe3+- activated carbon, activated carbon, Ba2+- activated carbon and Ca2+- activated carbon were prepared. The model for estimating activated energy of desorption was established. Temperature-programmed desorption (TPD) experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons. Results showed that the activation energy for the desorption of n-hexanol on the Ag+- activated carbon, the Cu2+- activated carbon and the Fe3+- activated carbon were higher than those of n-hexanol on the activated carbon, the Ca2+- activated carbon and the Ba2+- activated carbon.
基金supported by the National Key Research and Development Program of China(2017YFB0602901).
文摘Porous carbon materials have been widely used for the removal of SO_(2) from flue gas.The main objective of this work is to clarify the effects of adsorption temperature on SO_(2) adsorption and desorption energy consumption.Coal-based porous powdered activated coke(PPAC)prepared in the drop-tube reactor was used in this study.The N_(2) adsorption measurements and Fourier transform infrared spectrometer analysis show that PPAC exhibits a developed pore structure and rich functional groups.The experimental results show that with a decrease in adsorption temperature in the range of 50–150℃,the adsorption capacity of SO_(2) increases linearly;meanwhile,the adsorption capacity of H_(2)O increases,resulting in the increase in desorption energy consumption per unit mass of adsorbent.The processes of SO_(2) and H_(2)O desorption were determined by the temperature-programmed desorption test,and the desorption energies for each species were calculated.Considering the energy consumption per unit of desorption and the total amount of adsorbent,the optimal adsorption temperature yielding the minimum total energy consumption of regeneration is calculated.This study systematically demonstrates the effect of adsorption temperature on the adsorption–desorption process,providing a basis for energy saving and emission reduction in desulfurization system design.
基金Projects(20373072, 20473091) supported by the National Natural Science Foundation of China
文摘The amorphous Mg0.9Ti0.1Ni1?xPdx (x=0, 0.05, 0.1, 0.15) hydrogen storage alloys were prepared by mechanical alloying. The hydrogen desorption kinetics of the electrode alloys were studied by potentiostatic discharge experiments and linear polarization measurements. The experimental results show that the three-dimensional diffusion model dominates the hydrogen desorption process of the electrode alloys. The rate constants of hydrogen desorption reaction, which are obtained from a linear fitting of the model equation, increase with temperature. The activation energies of hydrogen desorption were calculated according to the Arrhenius equation. The calculated values were 46.2, 24.29, 33.4 and 34.95 kJ/mol for x=0, 0.05, 0.1 and 0.15 of Mg0.9Ti0.1Ni1?xPdx (x=0, 0.05, 0.1, 0.15) electrode alloys, respectively. The exchange current densities were determined by the linear polarization experiments. The variation of exchange current densities with Pd content in the alloy electrodes agrees with that of activation energies with Pd content.
基金the National Natural Science Foundation of China(Grant No.20336020)for financial support.
文摘In this work,the effect of the textural property of activated carbons on desorption activation energy and adsorption capacity for benzothiophene(BT)was investigated.BET surface areas and the textural parameters of three kinds of the activated carbons,namely SY-6,SY-13 and SY-19,were measured with an ASAP 2010 instrument.The desorption activation energies of BT on the activated carbons were determined by temperature-programmed desorption(TPD).Static adsorption experiments were carried out to determine the isotherms of BT on the activated carbons.The influence of the textural property of the activated carbons on desorption activation energy and the adsorption capacity for BT was discussed.Results showed that the BET surface areas of the activated carbons,SY-6,SY-13 and SY-19 were 1106,1070 and 689 m2·g^(-1),respectively,and their average pore diameters were 1.96,2.58 and 2.16 nm,respectively.The TPD results indicated that the desorption activation energy of BT on the activated carbons,SY-6,SY-19 and SY-13 were 58.84,53.02 and 42.57 KJ/mol,respectively.The isotherms showed that the amount of BT adsorbed on the activated carbons followed the order of SY-6>SY-19>SY-13.The smaller the average pore diameter of the activated carbon,the stronger its adsorption for BT and the higher the activation energy required for BT desorption on its surface.The Freundlich adsorption isotherm model can be properly used to formulate the adsorption behavior of BT on the activated carbons.
基金Supported by the National Natural Science Foundation of China (20576041) and the National High Technology Research and Development Program of China (2006AA06A310).
文摘This work mainly involves the study of effect of relative humidity on adsorption of formaldehyde on the activated carbons modified with organosilane solution. Modification of activated carbons was carded out by impregnating activated carbon with organosilane/methanol-containing solutions. The breakthrough curves of formaldehyde in the packed beds of original and modified activated carbons were measured, respectively, at relative humidity of 30%, 60%, and 80%. Temperature-programmed desorption (TPD) experiments were used to estimate the activation energy for desorption of formaldehyde from the activated carbon. Results showed that the relative humidity had strongly influence on breakthrough curves of formaldehyde in the packed beds. The higher the relative humidity of gas mixtures through the packed beds was, the smaller the breakthrough time of formaldehyde became. The use of organosilane compounds to modify surfaces of the activated carbon can enhance the interaction between formaldehyde and the surfaces, and as a result, the breakthrough times of formaldehyde in the packed beds of the modified activated carbon were longer than that in the packed bed of the unmodified activated carbon.
基金Funded by the National High Technology Research and Development Program of China("863"Program)(No.2006AA06A310)
文摘Using a walnut shellas a carbon source and ZnCl_2 as an activating agent,we resolved the temperature gradient problems of activated carbon in the microwave desorption process.An appropriate amount of silicon carbide was added to prepare the composite activated carbon with high thermalconductivity while developing VOC adsorption-microwave regeneration technology.The experimentalresults show that the coefficient of thermalconductivity of SiC-AC is three times as much as those of AC and SY-6.When microwave power was 480 W in its microwave desorption,the temperature of the bed thermaldesorption was 10 ℃ to 30 ℃ below that of normalactivated carbon prepared in our laboratory.The toluene desorption activation energy was 16.05 k J·mol^(-1),which was 15% less than the desorption activation energy of commercialactivated carbon.This study testified that the process could maintain its high adsorption and regeneration desorption performances.
基金Funded by the National Natural Science Foundation of China (No.20576041)
文摘The breakthrough curves of benzene and water on modified activated carbons(ACs) were investigated.Temperature-programmed desorption(TPD) experiments were conducted to measure the TPD curves of benzene and water on modified and unmodified ACs and to estimate the activation energy for the desorption of benzene on the modified ACs.Starting with unmodified ACs,two modified ACs were prepared by using two different types of silane,designated by KH560 and 1706.The results showed that the activation energy for the desorption of benzene on KH560/AC and 1706/AC was higher than that on unmodified AC.In addition,the activation energy for the desorption of water on KH560/AC and 1706/AC was lower than that on unmodified AC.The breakthrough curves of benzene obtained from the experimental observations under different humidity conditions were compared with the results of the TPD experiments.The results show that the modified ACs are less affected by water,whereas the unmodified ACs are more affected by water,indicating that surface modification by organosilane compounds can improve the adsorption of benzene on the activated carbo,which weakens the adsorption of water.