The model of dislocations was used to construct the model of grain boundary (GB) with pure rare earths, and rare earth elements and impurities. The influence of the interaction between rare earth elements and impuriti...The model of dislocations was used to construct the model of grain boundary (GB) with pure rare earths, and rare earth elements and impurities. The influence of the interaction between rare earth elements and impurities on the cohesive properties of 5.3° low angle GB of Fe was investigated by the recursion method. The calculated results of environment sensitive embeding energy( E ESE ) show that the preferential segregation of rare earth elements towards GBs exists. Calculations of bond order integrals (BOI) show that rare earth elements increase the cohesive strength of low angle GB, and impurities such as S, P weaken the intergranular cohesion of the GB. So rare earth element of proper quantity added in steel not only cleanses other harmful impurities off the GBs, but also enhances the intergranular cohesion. This elucidates the action mechanism of rare earth elements in steel from electronic level and offers theoretical evidence for applications of rare earth elements in steels.展开更多
The mechanism of interaction relation between the rare-earth element Ce and elements Pb and Bi in Ag-based filler metal has been studied. The results show that the compounds CePb and CeBi with high melting point can b...The mechanism of interaction relation between the rare-earth element Ce and elements Pb and Bi in Ag-based filler metal has been studied. The results show that the compounds CePb and CeBi with high melting point can be easily produced between these three elements in the filler metal, which greatly limited the formation of the isolated phase Pb or Bi and also eliminated the bad effect of impurity elements Pb and Bi on the spreading property of Ag-based filler metal. The metallurgical and quantum-mechanical bond formation analysis show that a strong chemical affinity was existed between the rare-earth element Ce and impurity elements Pb and Bi, which was proved by the XRD analysis results.展开更多
Interaction rule between representative RE and Sn, Sb, Pb, Cu, S, P low melting point elements respectively in Fe , Cu , Al , Ni base liquid solutions including totally 34 ternary and quarternary systems was inve...Interaction rule between representative RE and Sn, Sb, Pb, Cu, S, P low melting point elements respectively in Fe , Cu , Al , Ni base liquid solutions including totally 34 ternary and quarternary systems was investigated. For each system some thermodynamic properties were obtained, such as the standard free energies of equilibrium reactions, activity interaction coefficients etc ..展开更多
This article describes a new method for the simultaneous determination of trace rare earth elements (REEs) and non rare earth elements (NREEs) in high purity terbium oxide by ICP-AES after HPLC separation using P507 r...This article describes a new method for the simultaneous determination of trace rare earth elements (REEs) and non rare earth elements (NREEs) in high purity terbium oxide by ICP-AES after HPLC separation using P507 resin. The chromatographic separation of the analytes from the matrix using dilute nitric acid as mobile phase was studied. The experimental results showed that a favorable separation of trace metals (Cu and Gd) from the matrix (Tb) can easily be achieved by elution with dilute nitric acid within 25 min. The proposed method was applied to the determination of trace metals (Ca, Cu, Mg, Mn, Ni, Si, La, Ce, Pr, Nd, Sm, Eu and Gd) in high purity terbium oxide. The detection limits (DLs) for the analytes ranged from 0.4-4.0 μg\5g -1, and the recoveries are from 78%-105%.展开更多
Deep coal mines in northern Anhui province, China, provide opportunities for tracing the distribution and fractionation of rare earth elements CREEs) in deep seated environments. Major ions, as well as REE concentrat...Deep coal mines in northern Anhui province, China, provide opportunities for tracing the distribution and fractionation of rare earth elements CREEs) in deep seated environments. Major ions, as well as REE concentrations were measured in groundwater from a sandstone aquifer located between -400 and -280 m. Our results indicate that this groundwater consists of CI.HCOH-Na or CI.CO3-Na water types with warm temperature (30.1-31.4~C), circumneutral pH (7.27-8.61) and high levels of total dissolved solids (TDS ~ 1306--2165 mg/L). Concentrations of REEs in groundwater are high as expressed by their Nd con- centrations (0.0086-0.018μg/L). Except for weak heavy REEs (HREE) enrichment relative to light REEs (LREE), the similarity of REE distribution patterns between groundwater and aquifer rock indicate that enrichment of REEs is considered to be controlled by aquifer rock, as well as by their minerals, whereas the fractionation of REEs is controlled by HREE enriched minerals and, to a lesser extent, by inorganic REE complexes. Ce anomalies normalized to Post Archean Average Shale (PAAS) and aquifer rock are weak, which probably reflect the contribution of reduced conditions in combination with pH, rather than a sig- nature of aouifer rock.展开更多
Rare earth element (REE) concentrations were measured by ICP-MS for groundwater collected from deep seated Taiyuan Fm limestone aquifer (from -400 to -530 m) in Renlou Coal Mine, northern Anhui Province, China. It...Rare earth element (REE) concentrations were measured by ICP-MS for groundwater collected from deep seated Taiyuan Fm limestone aquifer (from -400 to -530 m) in Renlou Coal Mine, northern Anhui Province, China. It can be concluded that the groundwater is warm (34.0-37.2 ℃) C1-Ca, Na type water with circum-neutral pH (7.35-8.28) and high total dissolved solids (TDS, 1 746-2 849 mg/L). The groundwater exhibits heavy REEs enrichment relative to light REEs compared with Post Archean Average Shale (PAAS), as well as their aquifer rocks (limestone). The enrichment of REEs is considered to be controlled by terrigeneous materials (e.g. zircon) in aquifer rocks, whereas the fractionation of REEs is controlled by marine derived materials (e.g. calcite), to a less extent, terrigeneous materials and inorganic complexation. The Ce anomalies normalized to PAAS and aquifer rocks are weak, which probably reflects the signature of the aquifer rock rather than redox conditions or pH. The similarities of REE patterns between groundwater and aquifer rocks imply that aquifer rocks play important roles in controlling the REE characteristics of groundwater, and then provide a probability for discrimination of groundwater sources by using REEs.展开更多
A new idea is proposed by the PKU group to improve the magnetic properties of the Type-Ⅱ superconductor niobium. Rare earth elements like scandium and yttrium are doped into ingot niobium during the smelting processe...A new idea is proposed by the PKU group to improve the magnetic properties of the Type-Ⅱ superconductor niobium. Rare earth elements like scandium and yttrium are doped into ingot niobium during the smelting processes. A series of experiments have been done since 2010. The preliminary testing results show that the magnetic properties of niobium materials have changed with different doping elements and proportions while the superconductive transition temperature does not change very much. This method may increase the superheating magnetic field of niobium so as to improve the performance of the niobium cavity, which is a key component of SRF accelerators. A Tesla-type single-cell cavity made of scandium-doped niobium is being fabricated.展开更多
Deep-seated potassium-rich brines were identified in the Jiangling Basin,South China.Although magmatichydrothermal sources have been proposed,the relationship between brine-type potash mineralization and volcanism rem...Deep-seated potassium-rich brines were identified in the Jiangling Basin,South China.Although magmatichydrothermal sources have been proposed,the relationship between brine-type potash mineralization and volcanism remains unclear.In this study,U-Pb geochronology,geochemistry,fluid inclusion and C-O isotopic compositions of hydrothermal vein minerals in the Jiangling Basin are examined.Laser ablation U-Pb dating of calcite veins indicates that the ages are slightly younger than the formation age of the Balingshan basalt.Fluid inclusions in hydrothermal minerals show medium–low homogenization temperatures(160–220℃)and low salinities(0.14 to 4.9 wt%NaCl eqv.)and densities(0.882–0.944 g/cm^(3)).The liquid compositions of fluid inclusions in calcite veins from sedimentary strata have higher contents of potassium,compared with those from basalt.The coupled negativeδ^(13)CPDB(-10.3‰to-8.0‰)and positiveδ^(18)OSMOW(17.4‰to 20.7‰)values imply that calcite precipitation resulted from CO_(2)degassing of the basaltic magmatic fluids,as indicated by the gas composition of these inclusions in hydrothermal minerals.Rare earth element patterns indicate that water-rock interaction between hydrothermal fluids and sedimentary wall rocks contributed to the calcite precipitation in sedimentary strata.It is proposed that high-temperature water-rock interaction between magmatic fluids and sedimentary strata resulted in the potassium enrichment in fluids,interpreted as one of the sources of potassium-rich brines in the Jiangling Basin.展开更多
Studied waters belong to warm (T=30-50℃), alkaline (pH=8.9-9.3), low mineralized (TDS〈235 mg/l) Na-HCO3 or Na-SO4-HCO3 thermal waters with high content of SiO2 (up to 81 mg/1) and F (up to 3.9 mg/l), occur...Studied waters belong to warm (T=30-50℃), alkaline (pH=8.9-9.3), low mineralized (TDS〈235 mg/l) Na-HCO3 or Na-SO4-HCO3 thermal waters with high content of SiO2 (up to 81 mg/1) and F (up to 3.9 mg/l), occur on modern volcano-tectonic rejuvenated areas of Eastern Sikhote-Alin orogenic belt. Low 3He concentration as well as N2/O2 and N2/Ar ratios exclude influence of deep mantle fluid. New rare earth element data constrain our understanding of water-rock interaction occurring in the water source region. Meteoric origin of waters is proved by stable isotope values varying from -71%o to -136.1‰ and from -10.8‰ to -18.8%o for δ^2H and δ^18O respectively. REE patterns reflect high pH, resultfing from water-rock interaction and oxidative conditions. Calculations of deep aquifer temperature using Na-K and quartz geothermometers show 116.8-131.1℃ and 82.2-125.8℃ respectively. Presence of deep faults both with abnormal thermal gradient (-45- 50 K/km) define unique geochemical shape of thermal waters of Sikhote-Alin, area, where no present volcanic activity is registered.展开更多
The influence of pH on the partitioning behavior of REE at the water/particulate interface has been studied experimentally. At the beginning of colloid formation the adsorption of REE on iron hydroxide colloids is dom...The influence of pH on the partitioning behavior of REE at the water/particulate interface has been studied experimentally. At the beginning of colloid formation the adsorption of REE on iron hydroxide colloids is dominant, followed by REE desorption. Finally adsorption and desorption tend to reach equilibration. The capability of iron hydroxide colloids to adsorb the HREE is greater than that to adsorb the LREE. With increasing pH, LREE/HREE fractionations will take place between iron hydroxide colloids and water, leading to the reduction of their partition coefficient ratio (DLREE/DHREE). The DREE distribution patterns show Y anomalies (DY/DHo <1), with obvious REE tetrad effects appearing under low pH conditions. Experimental results have shown that there do exist REE tetrad effects in nature. In addition to pH, the chemical type of surface water and ion intensity are also the important factors controlling REE tetrad effects and leading to fractionations between particulate-adsorbed REE and dissolved REE.展开更多
文摘The model of dislocations was used to construct the model of grain boundary (GB) with pure rare earths, and rare earth elements and impurities. The influence of the interaction between rare earth elements and impurities on the cohesive properties of 5.3° low angle GB of Fe was investigated by the recursion method. The calculated results of environment sensitive embeding energy( E ESE ) show that the preferential segregation of rare earth elements towards GBs exists. Calculations of bond order integrals (BOI) show that rare earth elements increase the cohesive strength of low angle GB, and impurities such as S, P weaken the intergranular cohesion of the GB. So rare earth element of proper quantity added in steel not only cleanses other harmful impurities off the GBs, but also enhances the intergranular cohesion. This elucidates the action mechanism of rare earth elements in steel from electronic level and offers theoretical evidence for applications of rare earth elements in steels.
文摘The mechanism of interaction relation between the rare-earth element Ce and elements Pb and Bi in Ag-based filler metal has been studied. The results show that the compounds CePb and CeBi with high melting point can be easily produced between these three elements in the filler metal, which greatly limited the formation of the isolated phase Pb or Bi and also eliminated the bad effect of impurity elements Pb and Bi on the spreading property of Ag-based filler metal. The metallurgical and quantum-mechanical bond formation analysis show that a strong chemical affinity was existed between the rare-earth element Ce and impurity elements Pb and Bi, which was proved by the XRD analysis results.
基金Project Sponsored by the National Natural Science Foundation
文摘Interaction rule between representative RE and Sn, Sb, Pb, Cu, S, P low melting point elements respectively in Fe , Cu , Al , Ni base liquid solutions including totally 34 ternary and quarternary systems was investigated. For each system some thermodynamic properties were obtained, such as the standard free energies of equilibrium reactions, activity interaction coefficients etc ..
基金SupportedbytheNationalScienceFoundationofChina (No .2 0 0 0 70 10 10 8)andWuhanMunicipalScience&TechnologyCommission (No .995 0 0 40 80 )
文摘This article describes a new method for the simultaneous determination of trace rare earth elements (REEs) and non rare earth elements (NREEs) in high purity terbium oxide by ICP-AES after HPLC separation using P507 resin. The chromatographic separation of the analytes from the matrix using dilute nitric acid as mobile phase was studied. The experimental results showed that a favorable separation of trace metals (Cu and Gd) from the matrix (Tb) can easily be achieved by elution with dilute nitric acid within 25 min. The proposed method was applied to the determination of trace metals (Ca, Cu, Mg, Mn, Ni, Si, La, Ce, Pr, Nd, Sm, Eu and Gd) in high purity terbium oxide. The detection limits (DLs) for the analytes ranged from 0.4-4.0 μg\5g -1, and the recoveries are from 78%-105%.
基金financially supported by the National Natural Science Foundation of China (No. 40873015)the Eleventh Five-Year Science and Technology Project of Anhui Province,China(No. 08010302062)
文摘Deep coal mines in northern Anhui province, China, provide opportunities for tracing the distribution and fractionation of rare earth elements CREEs) in deep seated environments. Major ions, as well as REE concentrations were measured in groundwater from a sandstone aquifer located between -400 and -280 m. Our results indicate that this groundwater consists of CI.HCOH-Na or CI.CO3-Na water types with warm temperature (30.1-31.4~C), circumneutral pH (7.27-8.61) and high levels of total dissolved solids (TDS ~ 1306--2165 mg/L). Concentrations of REEs in groundwater are high as expressed by their Nd con- centrations (0.0086-0.018μg/L). Except for weak heavy REEs (HREE) enrichment relative to light REEs (LREE), the similarity of REE distribution patterns between groundwater and aquifer rock indicate that enrichment of REEs is considered to be controlled by aquifer rock, as well as by their minerals, whereas the fractionation of REEs is controlled by HREE enriched minerals and, to a lesser extent, by inorganic REE complexes. Ce anomalies normalized to Post Archean Average Shale (PAAS) and aquifer rock are weak, which probably reflect the contribution of reduced conditions in combination with pH, rather than a sig- nature of aouifer rock.
基金Project(40873015) supported by the National Natural Science Foundation of ChinaProject(08010302062) supported by the Eleventh Five-year Scientific and Technological Program of Anhui Province,China
文摘Rare earth element (REE) concentrations were measured by ICP-MS for groundwater collected from deep seated Taiyuan Fm limestone aquifer (from -400 to -530 m) in Renlou Coal Mine, northern Anhui Province, China. It can be concluded that the groundwater is warm (34.0-37.2 ℃) C1-Ca, Na type water with circum-neutral pH (7.35-8.28) and high total dissolved solids (TDS, 1 746-2 849 mg/L). The groundwater exhibits heavy REEs enrichment relative to light REEs compared with Post Archean Average Shale (PAAS), as well as their aquifer rocks (limestone). The enrichment of REEs is considered to be controlled by terrigeneous materials (e.g. zircon) in aquifer rocks, whereas the fractionation of REEs is controlled by marine derived materials (e.g. calcite), to a less extent, terrigeneous materials and inorganic complexation. The Ce anomalies normalized to PAAS and aquifer rocks are weak, which probably reflects the signature of the aquifer rock rather than redox conditions or pH. The similarities of REE patterns between groundwater and aquifer rocks imply that aquifer rocks play important roles in controlling the REE characteristics of groundwater, and then provide a probability for discrimination of groundwater sources by using REEs.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175008)
文摘A new idea is proposed by the PKU group to improve the magnetic properties of the Type-Ⅱ superconductor niobium. Rare earth elements like scandium and yttrium are doped into ingot niobium during the smelting processes. A series of experiments have been done since 2010. The preliminary testing results show that the magnetic properties of niobium materials have changed with different doping elements and proportions while the superconductive transition temperature does not change very much. This method may increase the superheating magnetic field of niobium so as to improve the performance of the niobium cavity, which is a key component of SRF accelerators. A Tesla-type single-cell cavity made of scandium-doped niobium is being fabricated.
基金supported by the Central Public Welfare Scientific Research Basic Scientific Research Business Expenses(Grant Nos.KK2005,KY1603)National Natural Science Foundation of China(Grant No.U20A2092)+1 种基金the National Basic Research Program of China(973 Program)(Grant No.2011CB403007)the China Geological Survey(Grant No.DD20190606)。
文摘Deep-seated potassium-rich brines were identified in the Jiangling Basin,South China.Although magmatichydrothermal sources have been proposed,the relationship between brine-type potash mineralization and volcanism remains unclear.In this study,U-Pb geochronology,geochemistry,fluid inclusion and C-O isotopic compositions of hydrothermal vein minerals in the Jiangling Basin are examined.Laser ablation U-Pb dating of calcite veins indicates that the ages are slightly younger than the formation age of the Balingshan basalt.Fluid inclusions in hydrothermal minerals show medium–low homogenization temperatures(160–220℃)and low salinities(0.14 to 4.9 wt%NaCl eqv.)and densities(0.882–0.944 g/cm^(3)).The liquid compositions of fluid inclusions in calcite veins from sedimentary strata have higher contents of potassium,compared with those from basalt.The coupled negativeδ^(13)CPDB(-10.3‰to-8.0‰)and positiveδ^(18)OSMOW(17.4‰to 20.7‰)values imply that calcite precipitation resulted from CO_(2)degassing of the basaltic magmatic fluids,as indicated by the gas composition of these inclusions in hydrothermal minerals.Rare earth element patterns indicate that water-rock interaction between hydrothermal fluids and sedimentary wall rocks contributed to the calcite precipitation in sedimentary strata.It is proposed that high-temperature water-rock interaction between magmatic fluids and sedimentary strata resulted in the potassium enrichment in fluids,interpreted as one of the sources of potassium-rich brines in the Jiangling Basin.
文摘Studied waters belong to warm (T=30-50℃), alkaline (pH=8.9-9.3), low mineralized (TDS〈235 mg/l) Na-HCO3 or Na-SO4-HCO3 thermal waters with high content of SiO2 (up to 81 mg/1) and F (up to 3.9 mg/l), occur on modern volcano-tectonic rejuvenated areas of Eastern Sikhote-Alin orogenic belt. Low 3He concentration as well as N2/O2 and N2/Ar ratios exclude influence of deep mantle fluid. New rare earth element data constrain our understanding of water-rock interaction occurring in the water source region. Meteoric origin of waters is proved by stable isotope values varying from -71%o to -136.1‰ and from -10.8‰ to -18.8%o for δ^2H and δ^18O respectively. REE patterns reflect high pH, resultfing from water-rock interaction and oxidative conditions. Calculations of deep aquifer temperature using Na-K and quartz geothermometers show 116.8-131.1℃ and 82.2-125.8℃ respectively. Presence of deep faults both with abnormal thermal gradient (-45- 50 K/km) define unique geochemical shape of thermal waters of Sikhote-Alin, area, where no present volcanic activity is registered.
基金This work was supported by the State Outsanding Young Scientists Foundation (Grant No. 49625304) the Pre-selected Project under the State Climbing Program of China (Grant No. 95-39).
文摘The influence of pH on the partitioning behavior of REE at the water/particulate interface has been studied experimentally. At the beginning of colloid formation the adsorption of REE on iron hydroxide colloids is dominant, followed by REE desorption. Finally adsorption and desorption tend to reach equilibration. The capability of iron hydroxide colloids to adsorb the HREE is greater than that to adsorb the LREE. With increasing pH, LREE/HREE fractionations will take place between iron hydroxide colloids and water, leading to the reduction of their partition coefficient ratio (DLREE/DHREE). The DREE distribution patterns show Y anomalies (DY/DHo <1), with obvious REE tetrad effects appearing under low pH conditions. Experimental results have shown that there do exist REE tetrad effects in nature. In addition to pH, the chemical type of surface water and ion intensity are also the important factors controlling REE tetrad effects and leading to fractionations between particulate-adsorbed REE and dissolved REE.