期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
PARTICULATE SIZE EFFECTS IN THE PARTICLE-REINFORCED METAL-MATRIX COMPOSITES 被引量:13
1
作者 魏悦广 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第1期45-58,共14页
The influences of I,article size on the mechanical properties of the particulate metal matrix composite;are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly u... The influences of I,article size on the mechanical properties of the particulate metal matrix composite;are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly using the conventional elastic-plastic theory. It is because that no length scale parameters are involved in the conventional theory. In the present research, using the strain gradient plasticity theory, a systematic research of the particle size effect in the particulate metal matrix composite is carried out. The roles of many composite factors, such as: the particle size, the Young's modulus of the particle, the particle aspect ratio and volume fraction, as well as the plastic strain hardening exponent of the matrix material, are studied in detail. In order to obtain a general understanding for the composite behavior, two kinds of particle shapes, ellipsoid and cylinder, are considered to check the strength dependence of the smooth or non-smooth particle surface. Finally, the prediction results will be applied to the several experiments about the ceramic particle-reinforced metal-matrix composites. The material length scale parameter is predicted. 展开更多
关键词 size effect strain gradient plasticity the particle-reinforced metal-matrix composite
在线阅读 下载PDF
Computer Simulation of the Indentation Creep Tests on Particle-Reinforced Composites
2
作者 Zhufeng YUE1,2)1)Department of Engineering Mechanics, Northwestern Polytechnical University, Xi’an 710072, China2)Institute of Materials, Ruhr University, 44780 Bochum, Germany 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第4期335-340,共6页
A systematical simulation has been carried out on the indentation creep test on particle-reinforced composites. The deformation, failure mechanisms and life are analyzed by three reasonable models. The following five ... A systematical simulation has been carried out on the indentation creep test on particle-reinforced composites. The deformation, failure mechanisms and life are analyzed by three reasonable models. The following five factors have been considered simultaneously: creep property of the particle, creep property of the matrix, the shape of the particle, the volume fraction of the particle and the size (relative size to the particle) of the indentation indenter. For all the cases, the power law respecting to the applied stress can be used to model the steady indentation creep depth rate of the indenter, and the detail expressions have been presented. The computer simulation precision is analyzed by the two-phase model and the three-phase model. Two places of the stress concentration are found in the composites. One is ahead of the indentation indenter, where the high stress state is deduced by the edge of the indenter and will decrease rapidly near to a steady value with the creep time. The other one is at the interface, where the high stress state is deduced by the misfit of material properties between the particles and matrix. It has been found that the creep dissipation energy density other than a stress parameter can be used to be the criterion to model the debonding of the interfaces. With the criterion of the critical creep dissipation energy density, a power law to the applied stress with negative exponent can be used to model the failure life deduced by the debonding of interfaces. The influences of the shape of the particles and the matching of creep properties of particle and matrix can be discussed for the failure. With a crack model, the further growth of interface crack is analyzed, and some important experimental phenomena can be predicted. The failure mechanism which the particle will be punched into matrix has been also discussed. The critical differences between the creep properties of the particles and matrix have been calculated, after a parameter has been defined. In the view of competition of failure mechanisms, the best matching of the creep properties of the two phases and the best shape of the particles are discussed for the composite design. 展开更多
关键词 Indentation creep test particle-reinforced composites Computer simulation DEFORMATION FAILURE
在线阅读 下载PDF
Spray Atomized and Codeposited Al-Li Based Metal-matrix Composites Processing and Properties 被引量:1
3
作者 E. Raskin S. Nayim M.Polak and J.Baram(Materials Engineering Dept., Ben-Gurion University of the Negev, Beer-Sheva, Israel )A.N.Sembira(Nuclear Research Center, Negev, Beer-Sheva, Israel)(To whom correspondence should be addressed) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第5期329-339,共11页
In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate wh... In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate where they impact and collect as rapidly solidified splats. Relatively high rates of solidification are achieved as a result of the thinness of the splats and the rapid heat extraction during flight and upon impacting with the substrate. The processing method uses codeposition of the metallic semi-solidified droplets (metallic matrix) with the injected reinforcement ceramic particles. In the present paper, the microstructures, mechanical properties, interfacial properties, thermal stability and aging behaviour of spray atomized and codeposited Al-Li-X MMC's (injected X=SiC, Al2O3) are reported and correlated to the processing conditions. 展开更多
关键词 LI Al Spray Atomized and Codeposited Al-Li Based metal-matrix composites Processing and Properties
在线阅读 下载PDF
Analysis of Solidification in Spray Atomized and Codeposited Metal-matrix Composites Part Ⅱ:Reinforcement Injection and Deposition 被引量:1
4
作者 V. Erukhimovitch and J.Baram (Materials Engineering Department, Ben-Gurion University of Negev, Beer-Sheva, Israel) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第3期165-170,共6页
The influence of the injection of reinforcing particles (for the production of metal matrix composites and of the droplets-to-substrate heat transfer on the resulting microstructural uniformity of spray atomized and c... The influence of the injection of reinforcing particles (for the production of metal matrix composites and of the droplets-to-substrate heat transfer on the resulting microstructural uniformity of spray atomized and codeposited composite material is analyzed. The reinforcement particles injection velocity has to be limited between an upper and a lower critical values. in order to ensure entrapment into the matrix droplets in flight. The thermal history of the injected droplets during the deposition stage is calculated with the assumption that the in-flight solidifying droplets reach the substrate while containing still at least 20% liquid volume fraction, in order to avoid porosity of the deposited material. The substrate to pouring-tube orifice distance where that condition is achieved depends strongly on the atomization pressure and the convective heat transfer coefficient of the substrate. It is demonstrated that 'tailoring' the microstructures and the reinforcement volume percent in the deposited material is feasible. The critical process parameters : the atomization pressure, the melt flow rate. the substrate to pouring-tube orifice distance, the reinforcement particles injection location and rate can all be adequately chosen in order to obtain any desired microstructure, grain size, reinforcement volume percent, with the additional benefit, if wanted, of rapid solidification processing 展开更多
关键词 Analysis of Solidification in Spray Atomized and Codeposited metal-matrix composites Part Reinforcement Injection and Deposition Vc
在线阅读 下载PDF
ANALYSIS OF ELASTOPLASTIC DEFORMATION IN METAL-MATRIX COMPOSITES WITH PARTICULATE REINFORCEMENTS
5
作者 方岱宁 周储伟 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1997年第2期153-160,共8页
In this paper, elastoplastic stress-strain behavior during tensile deformation of an aluminum alloy matrix composite containing alumina circular and non-circular particles is analyzed. In terms of cell models in conju... In this paper, elastoplastic stress-strain behavior during tensile deformation of an aluminum alloy matrix composite containing alumina circular and non-circular particles is analyzed. In terms of cell models in conjunction with continuum plasticity theory, various periodic arrays of particles are assumed in a three-dimensional finite element simulation. The geometrical effects of particle volume fraction, shape, aspect ratio, array and distribution, as well as non-circular particle orientation on the overall elastoplastic stress-strain behavior are examined in view to design optimum microstructures of the composites. 展开更多
关键词 elastoplastic deformation metal-matrix composite PARTICLES finite element analysis
在线阅读 下载PDF
Analysis of Solidification in Spray Atomized and Codeposited Metal-matrix Composites Part Ⅰ: Atomization
6
作者 V.Erukhimovitch and J.Baram(Materials Engineering Department, Ben-Gurion University of Negev, Beer-Sheva, Israel) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第2期79-90,共12页
Fluid mechanics, heat transfer and liquid-to-solid phase transformation are assessed in optimizing the spray atomization and codeposition process parameters for size refinement and microstructural uniformity of the de... Fluid mechanics, heat transfer and liquid-to-solid phase transformation are assessed in optimizing the spray atomization and codeposition process parameters for size refinement and microstructural uniformity of the deposited material. Atomization gas velocities, atomized droplets velocities, convective heat transfer coefficients, thermal histories of the solidifying droplets, freezing rates, fraction solid evolution and solid-liquid interface propagation velocity are calculated. The influence, on the deposit microstructural features, of process parameters like the atomization gas pressure, the pouring tube orifice diameter, the geometrical features of the atomization device,the potency of , pre-existing or injected as reinforcement, nucleation sites, the wetting angle between the liquid melt bnd impurity particles acting as preferred nucleation sites, the in-flight distance of the solidifying droplets in the atomization chamber, i5 evaluated. As a result of the evaluation, appropriate choice of the adjustable process parameters for the production of powders and/or deposits with desired grain size and microstructure, can be made. 展开更多
关键词 Co FIGURE ATOMIZATION Analysis of Solidification in Spray Atomized and Codeposited metal-matrix composites Part
在线阅读 下载PDF
Dry sliding friction and wear behaviors of Mg_2B_2O_5 whisker reinforced 6061Al matrix composites 被引量:4
7
作者 金培鹏 陈庚 +1 位作者 韩丽 王金辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期49-57,共9页
The friction and wear properties of Mg2B2O5 whisker reinforced 6061Al matrix composite fabricated via power ultrasonic-stir casting process were investigated using a ball-on-disk wear-testing machine against a GCr45 s... The friction and wear properties of Mg2B2O5 whisker reinforced 6061Al matrix composite fabricated via power ultrasonic-stir casting process were investigated using a ball-on-disk wear-testing machine against a GCr45 steel counterface under dry sliding conditions. The reinforcements include as-received Mg2B2O5 whiskers and Mg2B2O5 whiskers coated with CuO and ZnO. The volume fraction of the composites is 2%. The relationship between the wear rate and the coefficient of friction was discussed. The results indicate that the wear rate of the Mg2B2O5 whiskers coated with ZnO reinforced aluminum matrix composites is the lowest among the materials. As the applied load and sliding speed steadily increase the coefficients of friction and wear rates of the as-received matrix alloy and the fabricated composites decrease. As the applied load and sliding speed increase, the wear mechanisms of the composites shift from a mild to a severe regime. 展开更多
关键词 metal-matrix composite sliding wear wear testing wear mechanism
在线阅读 下载PDF
Flow stress behavior and processing map of extruded 7075Al/SiC particle reinforced composite prepared by spray deposition during hot compression 被引量:2
8
作者 吴红丹 张辉 +1 位作者 陈爽 傅定发 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期692-698,共7页
Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and st... Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and strain rate range of 0.001?1 s?1. The results indicate that the true stress?true strain curve almost exhibits rapid flow softening phenomenon without an obvious work hardening, and the stress decreases with increasing temperature and decreasing strain rate. Moreover, the stress levels are higher at temperature below 400 °C but lower at 450 °C compared with the spray deposited 7075Al alloy. Superplastic deformation characteristics are found at temperature of 450 °C and strain rate range of 0.001?0.1 s?1 with corresponding strain rate sensitivity of 0.72. The optimum parameters of hot working are determined to be temperature of 430?450 °C and strain rate of 0.001?0.05 s?1 based on processing map and optical microstructural observation. 展开更多
关键词 7075 Al SIC particle-reinforced composite hot compression deformation flow stress processing map superplastic deformation
在线阅读 下载PDF
Microstructure and wear characteristics of ATZ ceramic particle reinforced gray iron matrix surface composites 被引量:3
9
作者 Xue Ma Liang-feng Li +3 位作者 Fan Zhang Zu-hua Zhang Hao Wang En-ze Wang 《China Foundry》 SCIE 2018年第3期167-172,共6页
The alumina toughened zirconia(ATZ) ceramic particle reinforced gray iron matrix surface composite was successfully manufactured by pressureless infi ltration. The porous preform played a key role in the infi ltrating... The alumina toughened zirconia(ATZ) ceramic particle reinforced gray iron matrix surface composite was successfully manufactured by pressureless infi ltration. The porous preform played a key role in the infi ltrating progress. The microstructure was observed by scanning electron microscopy(SEM); the phase constitutions was analyzed by X-ray diffraction(XRD); and the hardness and wear resistance of selected specimens were tested by hardness testing machine and abrasion testing machine, respectively. The addition of high carbon ferrochromium powders leads to the formation of white iron during solidifi cation. The wear volume loss rates of ATZ ceramic particle reinforced gray iron matrix surface composite decreases fi rst, and then tends to be stable. The wear resistance of the composite is 2.7 times higher than that of gray iron matrix. The reason is a combination of the surface hardness increase of gray iron matrix and ATZ ceramic particles and alloy carbides protecting effect on gray iron matrix. 展开更多
关键词 metal-matrix SURFACE composites pressureless infiltrating particle-reinforcEMENT SURFACE ALLOYING WEAR testing
在线阅读 下载PDF
Interfacial reaction process of the hot-pressed WC/2024Al composite 被引量:9
10
作者 Chang-Hui Mao Xu-Dong Sun +2 位作者 Qiu-Shi Liang Jian Yang Jun Du 《Rare Metals》 SCIE EI CAS CSCD 2013年第4期397-401,共5页
12 vol%WCp/2024Al composite was fabricated from mixed powders by hot-pressing at various tempera-tures. Investigation of the interfacial reaction between the WC phase and the Al alloy matrix was performed by X-ray dif... 12 vol%WCp/2024Al composite was fabricated from mixed powders by hot-pressing at various tempera-tures. Investigation of the interfacial reaction between the WC phase and the Al alloy matrix was performed by X-ray diffraction (XRD), transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS). A multiple layer interface structure, which is composed of Al/ WAl12/AlnC3/WC, is found to form by the interfacial reaction during hot-pressing. Further study shows that the AlaC3 layer forms along with a given crystal orientation of WC phase and might retard the interfacial reaction process. 展开更多
关键词 metal-matrix composites (MMCs) Interfacialreaction HOT-PRESSING
在线阅读 下载PDF
Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process 被引量:12
11
作者 S.Aravindan P.V.Rao K.Ponappa 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第1期52-62,共11页
Magnesium alloy(AZ91D)composites reinforced with silicon carbide particle with different volume percentage were fabricated by two step stir casting process.The effect of changes in particle size and volume fraction of... Magnesium alloy(AZ91D)composites reinforced with silicon carbide particle with different volume percentage were fabricated by two step stir casting process.The effect of changes in particle size and volume fraction of SiC particles on physical and mechanical properties of composites were evaluated under as cast and heat treated(T6)conditions.The experimental results were compared with the standard theoretical models.The results reveal that the mechanical properties of composites increased with increasing SiC particles and decrease with increasing particle size.Distribution of particles and fractured surface were studied through SEM and the presence of elements is revealed by EDS study. 展开更多
关键词 Magnesium alloy metal-matrix composites(MMCs) Mechanical properties CASTING FRACTOGRAPHY
在线阅读 下载PDF
Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling 被引量:7
12
作者 Ping-ping Wang Guo-qin Chen +5 位作者 Wen-jun Li Hui Li Bo-yu Ju Murid Hussain Wen-shu Yang Gao-hui Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第11期1821-1827,共7页
The microstructural evolution and performance of diamond/Al composites during thermal cycling has rarely been investigated.In the present work,the thermal stability of diamond/Al composites during thermal cycling for ... The microstructural evolution and performance of diamond/Al composites during thermal cycling has rarely been investigated.In the present work,the thermal stability of diamond/Al composites during thermal cycling for up to 200 cycles was explored.Specifically,the thermal conductivity(λ)of the composites was measured and scanning electron microscopy of specific areas in the same samples was carried out to achieve quasi-in situ observations.The interface between the(100)plane of diamond and the Al matrix was well bonded with a zigzag morphology and abundant needle-like Al4C3 phases.By contrast,the interface between the(111)plane of diamond and the Al matrix showed weak bonding and debonded during thermal cycling.The debonding length increased rapidly over the first 100 thermal cycles and then increased slowly in the following 100 cycles.Theλof the diamond/Al composites decreased abruptly over the initial 20 cycles,increased afterward,and then decreased monotonously once more with increasing number of thermal cycles.Decreases in theλof the Al matrix and the corresponding stress concentration at the diamond/Al interface caused by thermal mismatch,rather than interfacial debonding,may be the main factors influencing the decrease inλof the diamond/Al composites,especially in the initial stages of thermal cycling. 展开更多
关键词 metal-matrix composites DIAMOND STABILITY thermal mismatch stress
在线阅读 下载PDF
Comparison of wear behaviour of LM13 Al−Si alloy based composites reinforced with synthetic(B_(4)C)and natural(ilmenite)ceramic particles 被引量:5
13
作者 Rahul GUPTA Tarun NANDA O.P.PANDEY 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第12期3613-3625,共13页
Dry sliding wear behaviour of stir-cast aluminium matrix composites(AMCs)containing LM13 alloy as matrix and ceramic particles as reinforcement was investigated.Two different ceramic particle reinforcements were used ... Dry sliding wear behaviour of stir-cast aluminium matrix composites(AMCs)containing LM13 alloy as matrix and ceramic particles as reinforcement was investigated.Two different ceramic particle reinforcements were used separately:synthetic ceramic particles(B_(4)C),and natural ceramic particles(ilmenite).Optical micrographs showed uniform dispersion of reinforced particles in the matrix material.Reinforced particles refined the grain size of eutectic silicon and changed its morphology to globular type.B_(4)C reinforced composites(BRCs)showed maximum improvement in hardness of AMCs.Ilmenite reinforced composites(IRCs)showed maximum reduction in coefficient of friction values due to strong matrix−reinforcement interfacial bonding caused by the formation of interfacial compounds.Dry sliding wear behaviour of composites was significantly improved as compared to base alloy.The low density and high hardness of B_(4)C particles resulted in high dislocation density around filler particles in BRCs.On the other hand,the low thermal conductivity of ilmenite particles resulted in early oxidation and formation of a tribo-layer on surface of IRCs.So,both types of reinforcements led to the improvement in wear properties of AMCs,though the mechanisms involved were very different.Thus,the low-cost ilmenite particles can be used as alternative fillers to the high-cost B_(4)C particles for processing of wear resistant composites. 展开更多
关键词 aluminium matrix composites ILMENITE boron carbide particle-reinforcEMENT wear test TRIBOLAYER XRD analysis SEM−EDS
在线阅读 下载PDF
Microstructure and mechanical properties of Nb–Mo–ZrB_2 composites prepared by hot-pressing sintering 被引量:3
14
作者 Yuan Gao Zong-de Liu +1 位作者 Qi Wang Yong-tian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第7期824-831,共8页
Nb-Mo-ZrB2 composites (V(Nb)/V(Mo) = 1) with 15v01% or 30v01% of ZrB2 were fabricated by hot-pressing sintering at 2000~C The phases, microstxucture, and mechamcal properties were then investigated. The composit... Nb-Mo-ZrB2 composites (V(Nb)/V(Mo) = 1) with 15v01% or 30v01% of ZrB2 were fabricated by hot-pressing sintering at 2000~C The phases, microstxucture, and mechamcal properties were then investigated. The composites contain Nb-Mo solid solution (denoted as (Nb, Mo)ss hereafter), ZrB, MoB, and NbB phases. Compressive strength test results suggest that the strength of Nb-Mo-ZrB2 composites increases with increasing ZrB2 content; Nb-Mo-30vol%ZrB2 had the highest compressive strength (1905.1 MPa). The improvement in the compressive strength of the Nb-Mo-ZrB2 composites is mainly attributed to the secondary phase strengthening oftke stiffer ZrB phase, sol- id-solution strengthening oftke (Nb, Mo)ss matrix as well as fme-grain strengtkening. The fracture toughness decreases with increasing ZrB2 content. Finally, the fracture modes oftke Nb-Mo-ZrB2 composites axe also discussed in detail. 展开更多
关键词 metal-matrix composites microstJ-ucture mechaNcal properties SINTERING
在线阅读 下载PDF
Influence of rutile(TiO_2) content on wear and microhardness characteristics of aluminium-based hybrid composites synthesized by powder metallurgy 被引量:2
15
作者 C.ANTONY VASANTHA KUMAR J.SELWIN RAJADURAI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期63-73,共11页
The effect of rutile(TiO_2) content on the wear and microhardness properties of aluminium(Al)-based hybrid composites was explored. The proposed content of TiO_2(0, 4%, 8%, 12%, mass fraction) was blended to Al-... The effect of rutile(TiO_2) content on the wear and microhardness properties of aluminium(Al)-based hybrid composites was explored. The proposed content of TiO_2(0, 4%, 8%, 12%, mass fraction) was blended to Al-15% SiC composites through powder metallurgy(P/M) process. Wear test was conducted using pin-on-disc apparatus under dry sliding conditions. Fabricated preforms were characterized using X-ray diffractometer(XRD), scanning electron microscope(SEM) and energy-dispersive X-ray spectrometer(EDS). Optical micrographs of the composite preforms display uniform distribution of TiO_2 throughout the matrix. Quantitative results indicate that wear resistance and microhardness increase with the increase of TiO_2 content. SEM images unveil that high wear resistance is attributed to high dislocation density of deformed planes and high hardness of TiO_2. SEM images of wear debris display gradual reduction in mean size of debris when TiO_2 content increases. EDS spectra confirm the presence of oxide layer which obviously reduces the effective area of contact between the sliding surfaces thereby lowers the wear loss of composites. The observation concludes that delamination and adhesive wear are the predominant mechanisms. 展开更多
关键词 aluminium metal-matrix composite RUTILE powder metallurgy sliding wear
在线阅读 下载PDF
GO/MgO/Mg interface mediated strengthening and electromagnetic interference shielding in AZ31 composite 被引量:2
16
作者 Z.Y.Xu C.F.Fang +4 位作者 C.J.Li R.Wang X.P.Zhang J.Tan Y.M.Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3800-3814,共15页
More requirements of electromagnetic interference(EMI) shielding performance are put forward for lightweight structural materials due to the development of aerospace and 5G communications. Herein, graphene oxide(GO) d... More requirements of electromagnetic interference(EMI) shielding performance are put forward for lightweight structural materials due to the development of aerospace and 5G communications. Herein, graphene oxide(GO) decorated with SnO_(2) coating is introduced as reinforcement into AZ31 Mg alloy. During the smelting process, the MgO layer is in situ gernerated at interface between GO and the molten Mg alloy matrix by consuming SnO_(2). In the solid state, such kind of interface structure can improve the GO-Mg interface bonding intensity,also significantly generate stacking faults. The AZ31 composite reinfoced by trace modified GO(0.1 wt%) exhibits high ultimate strength and almost the same elongation with AZ31 alloy. Compared with AZ31 alloy, the yield strength and ultimate tensile strength of composite are increased by 33.5% and 23.7%, respectively. Meanwhile, the multi-level electromagnetic reflection from the multi-layer structure of GO and the interface polarization caused by the MgO mid-layer can significantly improve EMI shielding performance. The appropriate interface design strategy achieves the effect of “two birds with one stone”. 展开更多
关键词 metal-matrix composites Mechanical properties EMI shielding MICROSTRUCTURES
在线阅读 下载PDF
Corrosion influence on surface appearance and microstructure of compo cast ZA27/SiC_p composites in sodium chloride solution 被引量:2
17
作者 Biljana BOBIC Jelena BAJAT +1 位作者 Ilija BOBIC Bore JEGDIC 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1512-1521,共10页
The influence of corrosion on the surface appearance and microstructure of particulate ZA27/SiCp composites was examined after 30 d immersion in a sodium chloride solution with the access of atmospheric oxygen. The co... The influence of corrosion on the surface appearance and microstructure of particulate ZA27/SiCp composites was examined after 30 d immersion in a sodium chloride solution with the access of atmospheric oxygen. The composites with different contents of SiC micro-particles were synthesized via compo casting. Microstructural studies by means of optical microscopy (OM) and scanning electron microscopy (SEM) showed that corrosion occurred in the composite matrices, preferentially in regions of the η phase, rich in zinc. The corrosion processes did not affect the silicon carbide particles incorporated in the matrix alloy. According to the results of electrochemical polarization measurements, an increase in the content of SiC particles in the composite matrice has led to the lower corrosion resistance in the composites. 展开更多
关键词 metal-matrix composites ZA27 alloy CORROSION MICROSTRUCTURE polarization resistance corrosion rate
在线阅读 下载PDF
Wear and mechanical characterization of Mg-Gr self-lubricating composite fabricated by mechanical alloying 被引量:2
18
作者 Azzat Esam Abdulqader Al-maamari AKMAsif Iqbal Dewan Muhammad Nuruzzaman 《Journal of Magnesium and Alloys》 SCIE EI CAS 2019年第2期283-290,共8页
In this research,the wear and mechanical responses of pure magnesium-graphite(Mg-Gr)composite have been investigated aiming to get the optimum composition of reinforcement.The composite materials were fabricated by me... In this research,the wear and mechanical responses of pure magnesium-graphite(Mg-Gr)composite have been investigated aiming to get the optimum composition of reinforcement.The composite materials were fabricated by mechanical alloying.The percentage of graphite reinforcement was chosen as 3,5,7 and 10 wt.%to identify its potential for self-lubricating property under dry sliding conditions.The mechanical properties including hardness,tensile strength and flexural strength of the composites and the base material were tested.The wear tests were conducted by using a pin-on-disc tribometer.The results show that the mechanical properties decrease with increasing graphite content as compared to that of the base material.The wear rate and average coefficient of friction decrease with the addition of graphite and was found to be minimum at 5 wt.%graphite reinforcement.The addition of 5 wt.%graphite in the composite exhibits superior wear properties as compared to that of the matrix material and other compositions of the Mg-Gr composites. 展开更多
关键词 metal-matrix composites(MMCs) CHARACTERIZATION Mechanical properties WEAR Mechanical Alloying
在线阅读 下载PDF
Finite element polycrystal model simulation of cold rolling textures in deformation processed two-phase Nb/Al metal-metal composites 被引量:2
19
作者 陈礼清 KANETAKE Naoyuki 《中国有色金属学会会刊:英文版》 CSCD 2005年第1期64-71,共8页
The finite element polycrystal model (FEPM) was extended and applied to simulate the development of the cold rolling textures of matrix aluminum in deformation processed two-phase 10% and 20%Nb/Al(in volume fraction) ... The finite element polycrystal model (FEPM) was extended and applied to simulate the development of the cold rolling textures of matrix aluminum in deformation processed two-phase 10% and 20%Nb/Al(in volume fraction) metal-metal composites on the basis of slip deformation of individual grains. This simulation method can assure the continuity of stress and displacement at the boundary during heterogeneous deformation and take arbitrary boundary conditions into consideration. The starting hot-extruded textures, as initial input condition, were taken into account in the FEPM simulation. The simulation results show that the main texture components and their evolution after various cold rolling reductions in 10% and 20%Nb/Al metal-metal composites are well qualitatively in agreement with the experimental ones. The initially extruded textures are rather weak, so they have no much influence on the simulated final cold rolling textures of the matrix aluminum for Nb/Al composites. 展开更多
关键词 metal-matrix composites FEPM Nb/Al composite TEXTURE ROLLING
在线阅读 下载PDF
Microstructure and high-temperature wear properties of in situ TiC composite coatings by plasma transferred arc surface alloying on gray cast iron 被引量:1
20
作者 Hang Zhao Jian-jun Li +3 位作者 Zhi-zhen Zheng Ai-hua Wang Qi-wen Huang Da-wen Zeng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第12期1273-1282,共10页
In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350-400μm thickness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) s... In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350-400μm thickness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) surface alloying of Ti-Fe alloy powder. Microhard- ness tests showed that the surface hardness increased approximately four-fold after the alloying treatment. The microstructure of the MMC coating was mainly composed of residual austenite, acicular martensite, and eutectic ledeburite. Scanning electron microscopy (SEM) and X-ray diffraction analyzes revealed that the in situ TiC particles, which were formed by direct reaction of Ti with carbon originally contained in the GCI, was uniformly distributed at the boundary of residual anstenite in the alloying zone. Pin-on-disc high-temperature wear tests were performed on samples both with and without the MMC coating at room temperature and at elevated temperatures (473 K and 623 K), and the wear behavior and mechanism were investigated. The results showed that, after the PTA alloying treatment, the wear resistance of the sam- ples improved significantly. On the basis of our analysis of the composite coatings by optical microscopy, SEM with energy-dispersive X-ray spectroscopy, and microhardness measurements, we attributed this improvement of wear resistance to the transformation of the microstruc- ture and to the presence of TiC particles. 展开更多
关键词 gray cast iron composite coatings particle-reinforced composites titanium carbide surface alloying MICROSTRUCTURE WEAR
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部