Based on the theory of elastic wave propagation in saturated soil subgrade established by the author of this paper, the axisymmetric vertical vibration of a rigid circular foundation resting on partially saturated soi...Based on the theory of elastic wave propagation in saturated soil subgrade established by the author of this paper, the axisymmetric vertical vibration of a rigid circular foundation resting on partially saturated soil subgrade which is composed of a dry elastic layer and it saturated substratum is studied. The analysis relied on the use of integral transform techniques and a pair of dual integral equations governing the vertical vibration of the rigid foundation is listed under the consideration of mixed boundary-value condition. The results tire reduced to the case for saturated half-space. The set of dual integral equations are reduced to a Fredholm integral equation of the second kind and solved by numerical procedures, Numerical examples are given at the end of the paper and plots of the dynamic compliance coefficient C-b versus the dimensionless frequency a(0) are presented.展开更多
A new method for analysis of counter beams is presented in the paper. The analysis has taken into account their stiffness EI, Winkler’s space with modulus of subgrade reaction k and equality deformities of the founda...A new method for analysis of counter beams is presented in the paper. The analysis has taken into account their stiffness EI, Winkler’s space with modulus of subgrade reaction k and equality deformities of the foundation beam with the ground. The solution is found by using the numerical analysis of the Winkler’s model, with variation of different moduli of the subgrade reaction k2 outside the force zone r, while under the force P exists the modulus of the subgrade reaction k, up to the definition of minimum bending moments. The exponential function k2(r), as the geometric position of the minimum moments is approximately assumed. From the potential energy conditions of the reciprocity of displacement and reaction, the width of the zone r and the modulus of the subgrade reaction k2 are explicitly determined, introducing in the calculation initial and calculation soil displacement wsi successively. At the end of the paper, it presented numerical example in which the influence of k and k2 values on bending moments of the counter beam is analyzed. The essential idea of this paper is to decrease the quantity of the reinforcement in the foundations, beams, i.e. to obtain a cost-efficient foundation construction.展开更多
In recent major earthquakes, the researchers have found the need for consideration of vertical seismic acceleration for the stability analysis of the man-made and natural slopes. However, in most past studies, the per...In recent major earthquakes, the researchers have found the need for consideration of vertical seismic acceleration for the stability analysis of the man-made and natural slopes. However, in most past studies, the performance of slopes has been assessed by accounting only the horizontal seismic component of the ground motion, without giving due weightage to the effect of vertical component. In the present study, analytical expressions are derived to determine the factor of safety, yield seismic coefficient and consequently the seismic displacement of cohesionless soil slope under combined horizontal and vertical components of the ground motion. The derivation uses the Newmark's sliding block approach, in which the soil slope with a planar failure surface within the framework of conventional pseudo-static analysis is assumed to follow the Mohr-Coulomb failure criterion. The effects of vertical seismic coefficient on the stability of cohesionless slope have been studied through a set of graphical presentations for a specific range of soil parameters. It is observed that overlooking the effect of the vertical component of the ground motion on factor of safety and the displacement while designing the slope may be detrimental, resulting in the slope failure. The general expressions presented in this paper may be highly useful in the field of earthquake geotechnical engineering practice for designing the cohesionless soil slopes under combined horizontal and vertical seismic loads.展开更多
To determine the appropriate soft foundation treatment for a river-crossing tunnel, freezing reinforcement design and technology were introduced based on the channel tunnel design and construction practice. Through fi...To determine the appropriate soft foundation treatment for a river-crossing tunnel, freezing reinforcement design and technology were introduced based on the channel tunnel design and construction practice. Through finite element analysis and engineering practices, two rows of horizontal perforated freezing pipes were designed and installed on both sides of a passage for tunnel rein- forcement, which produced the thickness and strength of frozen crust that satisfied the design requirements. These information are valuable for guiding the design and construction of river-crossing tunnels in coastal areas.展开更多
Parameter identification of Pasternak foundation models(PFM)is never satisfactory,which discourages the application and popularization of PFM.In the present study,an energy-based model to predict the dynamic foundatio...Parameter identification of Pasternak foundation models(PFM)is never satisfactory,which discourages the application and popularization of PFM.In the present study,an energy-based model to predict the dynamic foundation coefficients was proposed using the vibration kinetic energy and potential energy of a Pasternak foundation-rigid plate system.On the basis of the Pasternak foundation,the relationship among the natural frequency,dynamic foundation coefficients,rigid plate configuration,and vibrating soil equivalent mass per unit area was considered.To obtain the natural frequencies of the Pasternak foundation-rigid plate system,dynamic tests were performed.Using two or more dynamic test results of various rigid plates on a foundation,a set of equations of dynamic foundation coefficients was set up to directly identify the foundation coefficients and equivalent mass per unit area of vibrating soil.The feasibility of the proposed method was verified by comparing it with the outdoor and indoor test results and finite element analysis results.When the proposed method is used to obtain the dynamic parameters,PFM can be generalized and applied more widely in engineering practice.展开更多
在光频域反射(Optical Frequency Domain Reflection,OFDR)技术的分布式光纤测量方法的基础上,提出了基于欧拉梁理论推导出光纤测量应变与土体水平位移之间的转换关系,并通过室内实验进行了验证,证实了分布式光纤测水平位移的可行性和应...在光频域反射(Optical Frequency Domain Reflection,OFDR)技术的分布式光纤测量方法的基础上,提出了基于欧拉梁理论推导出光纤测量应变与土体水平位移之间的转换关系,并通过室内实验进行了验证,证实了分布式光纤测水平位移的可行性和应变-位移转换关系的准确性,且将传统测斜仪法与光纤测量方法分别在基坑工程中得到了应用。通过试验,光纤测量方法能够准确详细地量测深层土体在开挖过程中的水平位移变化情况。展开更多
文摘Based on the theory of elastic wave propagation in saturated soil subgrade established by the author of this paper, the axisymmetric vertical vibration of a rigid circular foundation resting on partially saturated soil subgrade which is composed of a dry elastic layer and it saturated substratum is studied. The analysis relied on the use of integral transform techniques and a pair of dual integral equations governing the vertical vibration of the rigid foundation is listed under the consideration of mixed boundary-value condition. The results tire reduced to the case for saturated half-space. The set of dual integral equations are reduced to a Fredholm integral equation of the second kind and solved by numerical procedures, Numerical examples are given at the end of the paper and plots of the dynamic compliance coefficient C-b versus the dimensionless frequency a(0) are presented.
文摘A new method for analysis of counter beams is presented in the paper. The analysis has taken into account their stiffness EI, Winkler’s space with modulus of subgrade reaction k and equality deformities of the foundation beam with the ground. The solution is found by using the numerical analysis of the Winkler’s model, with variation of different moduli of the subgrade reaction k2 outside the force zone r, while under the force P exists the modulus of the subgrade reaction k, up to the definition of minimum bending moments. The exponential function k2(r), as the geometric position of the minimum moments is approximately assumed. From the potential energy conditions of the reciprocity of displacement and reaction, the width of the zone r and the modulus of the subgrade reaction k2 are explicitly determined, introducing in the calculation initial and calculation soil displacement wsi successively. At the end of the paper, it presented numerical example in which the influence of k and k2 values on bending moments of the counter beam is analyzed. The essential idea of this paper is to decrease the quantity of the reinforcement in the foundations, beams, i.e. to obtain a cost-efficient foundation construction.
文摘In recent major earthquakes, the researchers have found the need for consideration of vertical seismic acceleration for the stability analysis of the man-made and natural slopes. However, in most past studies, the performance of slopes has been assessed by accounting only the horizontal seismic component of the ground motion, without giving due weightage to the effect of vertical component. In the present study, analytical expressions are derived to determine the factor of safety, yield seismic coefficient and consequently the seismic displacement of cohesionless soil slope under combined horizontal and vertical components of the ground motion. The derivation uses the Newmark's sliding block approach, in which the soil slope with a planar failure surface within the framework of conventional pseudo-static analysis is assumed to follow the Mohr-Coulomb failure criterion. The effects of vertical seismic coefficient on the stability of cohesionless slope have been studied through a set of graphical presentations for a specific range of soil parameters. It is observed that overlooking the effect of the vertical component of the ground motion on factor of safety and the displacement while designing the slope may be detrimental, resulting in the slope failure. The general expressions presented in this paper may be highly useful in the field of earthquake geotechnical engineering practice for designing the cohesionless soil slopes under combined horizontal and vertical seismic loads.
文摘To determine the appropriate soft foundation treatment for a river-crossing tunnel, freezing reinforcement design and technology were introduced based on the channel tunnel design and construction practice. Through finite element analysis and engineering practices, two rows of horizontal perforated freezing pipes were designed and installed on both sides of a passage for tunnel rein- forcement, which produced the thickness and strength of frozen crust that satisfied the design requirements. These information are valuable for guiding the design and construction of river-crossing tunnels in coastal areas.
文摘Parameter identification of Pasternak foundation models(PFM)is never satisfactory,which discourages the application and popularization of PFM.In the present study,an energy-based model to predict the dynamic foundation coefficients was proposed using the vibration kinetic energy and potential energy of a Pasternak foundation-rigid plate system.On the basis of the Pasternak foundation,the relationship among the natural frequency,dynamic foundation coefficients,rigid plate configuration,and vibrating soil equivalent mass per unit area was considered.To obtain the natural frequencies of the Pasternak foundation-rigid plate system,dynamic tests were performed.Using two or more dynamic test results of various rigid plates on a foundation,a set of equations of dynamic foundation coefficients was set up to directly identify the foundation coefficients and equivalent mass per unit area of vibrating soil.The feasibility of the proposed method was verified by comparing it with the outdoor and indoor test results and finite element analysis results.When the proposed method is used to obtain the dynamic parameters,PFM can be generalized and applied more widely in engineering practice.
文摘在光频域反射(Optical Frequency Domain Reflection,OFDR)技术的分布式光纤测量方法的基础上,提出了基于欧拉梁理论推导出光纤测量应变与土体水平位移之间的转换关系,并通过室内实验进行了验证,证实了分布式光纤测水平位移的可行性和应变-位移转换关系的准确性,且将传统测斜仪法与光纤测量方法分别在基坑工程中得到了应用。通过试验,光纤测量方法能够准确详细地量测深层土体在开挖过程中的水平位移变化情况。