Taking the multi-component system as research object, a maintenance optimization model based on the unequal inspection period and imperfect repair is established by considering the requirement of expected availability...Taking the multi-component system as research object, a maintenance optimization model based on the unequal inspection period and imperfect repair is established by considering the requirement of expected availability for improving the system's availability. An age reduction factor is used to describe the effect of imperfect repair, and the modelling approach for the unequal inspection period is proposed. Unavailable situations are classified into three kinds of independent cases, and the availability is calculated accordingly. Based on the analysis of the relationship between the unavailable cases and the unequal inspection period, an optimization model under imperfect repair is established to optimize the system's expected availability. A case study of a wind turbine is provided, and three key components, i.e. gearbox, generator and spindle, are considered. The optimization results of the unequal inspection period model and the equal inspection period model are compared. The results show that the unequal inspection period model based on availability can update the maintenance plan so as to optimize maintenance activities and improve the system's availability.展开更多
This paper proposes a dynamic opportunistic preventive maintenance (PM) optimization policy for multi-unit series systems by integrating multi PM techniques. Two PM techniques, periodic PM and sequential PM, are consi...This paper proposes a dynamic opportunistic preventive maintenance (PM) optimization policy for multi-unit series systems by integrating multi PM techniques. Two PM techniques, periodic PM and sequential PM, are considered. Whenever one of the units reaches its reliability threshold, a PM action has to be performed on that unit. At that time the whole system has to be stopped and PM opportunities arise for the other unitsof the system. An optimal PM practice is determined by maximizing the short-term cumulative opportunistic maintenance (OM) cost savings for the whole system. Numerical examples are given to show how this approach works. Finally, a comparison between the proposed PM policy and the other policies is given.展开更多
基金The National Natural Science Foundation of China(No.71671035)Open Fund of Jiangsu Wind Power Engineering Technology Center,China(No.ZK15-03-01,ZK16-03-07)
文摘Taking the multi-component system as research object, a maintenance optimization model based on the unequal inspection period and imperfect repair is established by considering the requirement of expected availability for improving the system's availability. An age reduction factor is used to describe the effect of imperfect repair, and the modelling approach for the unequal inspection period is proposed. Unavailable situations are classified into three kinds of independent cases, and the availability is calculated accordingly. Based on the analysis of the relationship between the unavailable cases and the unequal inspection period, an optimization model under imperfect repair is established to optimize the system's expected availability. A case study of a wind turbine is provided, and three key components, i.e. gearbox, generator and spindle, are considered. The optimization results of the unequal inspection period model and the equal inspection period model are compared. The results show that the unequal inspection period model based on availability can update the maintenance plan so as to optimize maintenance activities and improve the system's availability.
基金the National Natural Science Foundation of China (Nos. 50905115 and 70771065)the National High Technology Research and Development Program (863) of China (Nos. 2009AA043403,2009AA043000 and 2008042801)the Shanghai Natural Science Foundation (No. 09ZR1414400)
文摘This paper proposes a dynamic opportunistic preventive maintenance (PM) optimization policy for multi-unit series systems by integrating multi PM techniques. Two PM techniques, periodic PM and sequential PM, are considered. Whenever one of the units reaches its reliability threshold, a PM action has to be performed on that unit. At that time the whole system has to be stopped and PM opportunities arise for the other unitsof the system. An optimal PM practice is determined by maximizing the short-term cumulative opportunistic maintenance (OM) cost savings for the whole system. Numerical examples are given to show how this approach works. Finally, a comparison between the proposed PM policy and the other policies is given.