This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting eff...This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.展开更多
For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SF...For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.展开更多
The problem of global stabilization by state feedback for a class of time-delay nonlinear system is considered. By constructing the appropriate Lyapunov-Krasovskii functionals (LKF) and using the backstepping design, ...The problem of global stabilization by state feedback for a class of time-delay nonlinear system is considered. By constructing the appropriate Lyapunov-Krasovskii functionals (LKF) and using the backstepping design, a linear state feedback controller making the closed-loop system globally asymptotically stable is constructed.展开更多
The delay-dependent H-infinity analysis and H-infinity control problems for continuous time-delay systems are studied. By introducing an equality with some free weighting matrices, an improved criterion of delay-depen...The delay-dependent H-infinity analysis and H-infinity control problems for continuous time-delay systems are studied. By introducing an equality with some free weighting matrices, an improved criterion of delay-dependent stability with H-infinity performance for such systems is presented, and a criterion of existence and some design methods of delay-dependent H-infinity controller for such systems are proposed in term of a set of matrix inequalities, which is solved efficiently by an iterative algorithm. Further, the corresponding results for the delay-dependent robust H-infinity analysis and robust H-infinity control problems for continuous time-delay uncertain systems are given. Finally, two numerical examples are given to illustrate the efficiency of the proposed method by comparing with the other existing results.展开更多
This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm-bounded parameter perturbations in the system state and control/disturbance. On the existence of delayed/undelayed f...This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm-bounded parameter perturbations in the system state and control/disturbance. On the existence of delayed/undelayed full state feedback controllers, we present a sufficient condition and give a design method in the form of Riccati equation. The controller can not only stabilize the time-delay system, but also make the H∞ norm of the closed-loop system be less than a given bound. This result practically generalizes the related results in current literature.展开更多
Traditional passive vibration absorbers are effective only when their natural frequencies are close to those of the excitations. To solve this problem, a vibration absorber with time-delayed feedback control is propos...Traditional passive vibration absorbers are effective only when their natural frequencies are close to those of the excitations. To solve this problem, a vibration absorber with time-delayed feedback control is proposed to suppress vibration of the primary system under excitation with changing frequency. Firstly, the mechanical model of the delay coupled system is established. Then, the displacement transfer ratio of the system is obtained. The stability of the system is analyzed since delay may result in destabilization. Next, in order to design the control parameters, the vibration absorption performances of the proposed time-delayed vibration absorber are studied. The vibration absorption region is shown. The results show that time-delayed feedback control is able to change the response of the system. The effective vibration absorption frequency band is adjustable by tuning the control gain and time delay. The effective frequency band can be widened when choosing appropriate control parameters. The vibration absorption performances can be greatly improved by the time-delayed absorber. In addition, the optimum control parameters are obtained. Finally, the experimental prototype is constructed. Several tests with different control parameters are taken. The experimental and analytical results match quite well.展开更多
An adaptive state feedback predictive control (SFPC) scheme and an expert control scheme are presented and applied to the temperature control of a 1200 kt·a^-1 delayed coking furnace, which is the key equipment...An adaptive state feedback predictive control (SFPC) scheme and an expert control scheme are presented and applied to the temperature control of a 1200 kt·a^-1 delayed coking furnace, which is the key equipment for the delayed coking process. Adaptive SFPC is used to improve the performance of temperature control in normal operation. A simplified nonlinear model on the basis of first principles of the furnace is developed to obtain a state space model by linearization. Taking advantage of the nonlinear model, an online model adapting method is presented to accommodate the dynamic change of process characteristics because of tube coking and load changes. To compensate the large inverse response of outlet temperature resulting from the sudden increase of injected steam of a particular velocity to tubes, a monitoring method and an expert control scheme based on heat balance calculation are proposed. Industrial implementation shows the effectiveness and feasibility of the proposed control strategy.展开更多
A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC co...A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC controllers’performance in tracking predefined trajectory under different scenarios.MPC controller is designed based on the simple longitudinal-yaw-lateral motions of a single-track vehicle with a linear tire,which is an approximation of the more realistic model of a vehicle with double-track motion with a non-linear tire mode.RSC is designed on the basis of the same method as adopted for the MPC controller to achieve a fair comparison.Then,three test cases are built in CarSim-Simulink joint platform.Specifically,the verification test is used to test the tracking accuracy of MPC and RSC controller under well road conditions.Besides,the double lane change test with low road adhesion is designed to find the maximum velocity that both controllers can carry out while guaranteeing stability.Furthermore,an extreme curve test is built where the road adhesion changes suddenly,in order to test the performance of both controllers under extreme conditions.Finally,the advantages and disadvantages of MPC and RSC under different scenarios are also discussed.展开更多
A new technique for considering the stabilizing time-variant state feedback gains is proposed from the viewpoint of information geometry. First, parametrization of the set of all stabilizing time-variant state feedbac...A new technique for considering the stabilizing time-variant state feedback gains is proposed from the viewpoint of information geometry. First, parametrization of the set of all stabilizing time-variant state feedback gains is given. Moreover, a diffeomorphic structure between the set of stabilizing time-variant state feedback gains and the Cartesian product of positive definite matrix and skew symmetric matrix satisfying certain algebraic conditions is constructed. Furthermore, an immersion and some results about the eigenvalue locations of stable state feedback systems are derived.展开更多
This paper presents a new method to eliminate the chattering of state feedback sliding mode control (SMC) law for the mobile control of an autonomous underwater vehicle (AUV) which is nonlinear and suffers from un...This paper presents a new method to eliminate the chattering of state feedback sliding mode control (SMC) law for the mobile control of an autonomous underwater vehicle (AUV) which is nonlinear and suffers from unknown disturbances system. SMC is a well-known nonlinear system control algorithm for its anti-disturbances capability, while the chattering on switch surface is one stiff question. To dissipate the well-known chattering of SMC, the switching manifold is proposed by presetting a Hurwitz matrix which is deducted from the state feedback matrix. Meanwhile, the best switching surface is achieved by use of eigenvalues of the Hurwitz matrix. The state feedback control parameters are not only applied to control the states of AUV but also connected with coefficients of switching surface. The convergence of the proposed control law is verified by Lyapunov function and the robust character is validated by the Matlab platform of one AUV model.展开更多
Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field ad...Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neural network with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network.展开更多
The design of a functional observer and reduced-order observer with internal delay for linear singular timedelay systems with unknown inputs is discussed. The sufficient conditions of the existence of observers, which...The design of a functional observer and reduced-order observer with internal delay for linear singular timedelay systems with unknown inputs is discussed. The sufficient conditions of the existence of observers, which are normal linear time-delay systems, and the corresponding design steps are presented via linear matrix inequality(LMI). Moreover, the observer-based feedback stabilizing controller is obtained. Three examples are given to show the effectiveness of the proposed methods.展开更多
The study of controlling high-current proton beam halo-chaos has become a key concerned issue for manyimportant applications. In this paper, time-delayed feedback control method is proposed for beam halo-chaos. Partic...The study of controlling high-current proton beam halo-chaos has become a key concerned issue for manyimportant applications. In this paper, time-delayed feedback control method is proposed for beam halo-chaos. Particle incell simulation results show that the method is very effective and has some advantages for high-current beam experimentsand engineering.展开更多
A strategy for time-delayed feedback control optimization of quasi linear systems with random excitation is proposed. First, the stochastic averaging method is used to reduce the dimension of the state space and to de...A strategy for time-delayed feedback control optimization of quasi linear systems with random excitation is proposed. First, the stochastic averaging method is used to reduce the dimension of the state space and to derive the stationary response of the system. Secondly, the control law is assumed to be velocity feedback control with time delay and the unknown control gains are determined by the performance indices. The response of the controlled system is predicted through solving the Fokker-Plank-Kolmogorov equation associated with the averaged Ito equation. Finally, numerical examples are used to illustrate the proposed control method, and the numerical results are confirmed by Monte Carlo simulation .展开更多
For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mi...For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.展开更多
In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the...In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the solution of an algebraic Riccati equation (ARE) and makes the H∞norm of the closedloop transfer function matrix from disturbance inputs to controlled outputs less than a given constant which ensure the stability of the overall controlled system at each iteration. The given example shows that the convergence of the algorithm is satisfactory.展开更多
This paper studies the problem of robust H∞ control design for a class of uncertain interconnected systems via state feedback. This class of systems are described by a state space model, which contains unknown nonlin...This paper studies the problem of robust H∞ control design for a class of uncertain interconnected systems via state feedback. This class of systems are described by a state space model, which contains unknown nonlinear interaction and time-varying norm-bounded parametric uncertainties in state equation. Using the Riccati-equation-based approach we design state feedback control laws, which guarantee the decentralized stability with disturbance attenuation for the interconnected uncertain systems. A simple example of an interconnected uncertain linear system is presented to illustrate the results.展开更多
A robust and scalable scheme to generate a steady three-dimensional entangled state for a V-type atom and a A- type atom trapped in a strongly dissipative bimodal cavity is proposed by direct feedback control based on...A robust and scalable scheme to generate a steady three-dimensional entangled state for a V-type atom and a A- type atom trapped in a strongly dissipative bimodal cavity is proposed by direct feedback control based on quantum-jump detection. The robustness of this scheme reflects in the insensitivity to detection inefficiencies and the strong ability against the parameter fluctuations in the feedback, driving, and coupling strengths. The influence of atomic spontaneous emission can be suppressed by using the local feedback control. The scalability is ensured that N-dimensional entangled states of two atoms can be deterministically generated.展开更多
The state feedback design for singularly perturbed systems described in Delta operator is considered. The composite state feedback controller for slow and fast subsystems is designed by using the direct method. The ob...The state feedback design for singularly perturbed systems described in Delta operator is considered. The composite state feedback controller for slow and fast subsystems is designed by using the direct method. The obtained results can bring previous conclusions of continuous and discrete time systems into the unified Delta framework. A simulation example is presented to demonstrate the validity and efficiency of the design.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11902081)the Science and Technology Projects of Guangzhou (Grant No. 202201010326)the Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No. 2023A1515010833)。
文摘This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.
基金supported by the National Natural Science Foundation of China(62473354).
文摘For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.
基金Supported by the "973" Project of P. R. China (G1998020300)
文摘The problem of global stabilization by state feedback for a class of time-delay nonlinear system is considered. By constructing the appropriate Lyapunov-Krasovskii functionals (LKF) and using the backstepping design, a linear state feedback controller making the closed-loop system globally asymptotically stable is constructed.
基金This work was supported by the National Natural Science Foundation of China (No. 60024301)Natural Science Fund of Shanxi Province of China(No. 20051032)
文摘The delay-dependent H-infinity analysis and H-infinity control problems for continuous time-delay systems are studied. By introducing an equality with some free weighting matrices, an improved criterion of delay-dependent stability with H-infinity performance for such systems is presented, and a criterion of existence and some design methods of delay-dependent H-infinity controller for such systems are proposed in term of a set of matrix inequalities, which is solved efficiently by an iterative algorithm. Further, the corresponding results for the delay-dependent robust H-infinity analysis and robust H-infinity control problems for continuous time-delay uncertain systems are given. Finally, two numerical examples are given to illustrate the efficiency of the proposed method by comparing with the other existing results.
基金This project was supported by the National Natural Science Foundation of China (No. 69974022).
文摘This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm-bounded parameter perturbations in the system state and control/disturbance. On the existence of delayed/undelayed full state feedback controllers, we present a sufficient condition and give a design method in the form of Riccati equation. The controller can not only stabilize the time-delay system, but also make the H∞ norm of the closed-loop system be less than a given bound. This result practically generalizes the related results in current literature.
基金the National Natural Science Foundation of China (Grants 11572224 and 11772229).
文摘Traditional passive vibration absorbers are effective only when their natural frequencies are close to those of the excitations. To solve this problem, a vibration absorber with time-delayed feedback control is proposed to suppress vibration of the primary system under excitation with changing frequency. Firstly, the mechanical model of the delay coupled system is established. Then, the displacement transfer ratio of the system is obtained. The stability of the system is analyzed since delay may result in destabilization. Next, in order to design the control parameters, the vibration absorption performances of the proposed time-delayed vibration absorber are studied. The vibration absorption region is shown. The results show that time-delayed feedback control is able to change the response of the system. The effective vibration absorption frequency band is adjustable by tuning the control gain and time delay. The effective frequency band can be widened when choosing appropriate control parameters. The vibration absorption performances can be greatly improved by the time-delayed absorber. In addition, the optimum control parameters are obtained. Finally, the experimental prototype is constructed. Several tests with different control parameters are taken. The experimental and analytical results match quite well.
基金the State Key Development Program for Basic Research of China(2002CB312200)the National High Technology Research and Development Program of China(2007AA04Z193)
文摘An adaptive state feedback predictive control (SFPC) scheme and an expert control scheme are presented and applied to the temperature control of a 1200 kt·a^-1 delayed coking furnace, which is the key equipment for the delayed coking process. Adaptive SFPC is used to improve the performance of temperature control in normal operation. A simplified nonlinear model on the basis of first principles of the furnace is developed to obtain a state space model by linearization. Taking advantage of the nonlinear model, an online model adapting method is presented to accommodate the dynamic change of process characteristics because of tube coking and load changes. To compensate the large inverse response of outlet temperature resulting from the sudden increase of injected steam of a particular velocity to tubes, a monitoring method and an expert control scheme based on heat balance calculation are proposed. Industrial implementation shows the effectiveness and feasibility of the proposed control strategy.
基金Supported by Natural Science Foundation of China(Grant Nos.52072051,51705044)Chongqing Municipal Natural Science Foundation of China(Grant No.cstc2020jcyj-msxmX0956)+1 种基金State Key Laboratory of Mechanical System and Vibration(Grant No.MSV202016)State Key Laboratory of Mechanical Transmissions(Grant No.SKLMT-KFKT-201806).
文摘A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC controllers’performance in tracking predefined trajectory under different scenarios.MPC controller is designed based on the simple longitudinal-yaw-lateral motions of a single-track vehicle with a linear tire,which is an approximation of the more realistic model of a vehicle with double-track motion with a non-linear tire mode.RSC is designed on the basis of the same method as adopted for the MPC controller to achieve a fair comparison.Then,three test cases are built in CarSim-Simulink joint platform.Specifically,the verification test is used to test the tracking accuracy of MPC and RSC controller under well road conditions.Besides,the double lane change test with low road adhesion is designed to find the maximum velocity that both controllers can carry out while guaranteeing stability.Furthermore,an extreme curve test is built where the road adhesion changes suddenly,in order to test the performance of both controllers under extreme conditions.Finally,the advantages and disadvantages of MPC and RSC under different scenarios are also discussed.
文摘A new technique for considering the stabilizing time-variant state feedback gains is proposed from the viewpoint of information geometry. First, parametrization of the set of all stabilizing time-variant state feedback gains is given. Moreover, a diffeomorphic structure between the set of stabilizing time-variant state feedback gains and the Cartesian product of positive definite matrix and skew symmetric matrix satisfying certain algebraic conditions is constructed. Furthermore, an immersion and some results about the eigenvalue locations of stable state feedback systems are derived.
基金supported by National Basic Research Program of China (973 Program) (No. 6138101004-3)Key Project of Innovation Knowledge of Chinese Academy of Sciences (No. YYYJ-0917)Innovation Knowledge of Chinese Academy of Sciences (No.O7A6210601)
文摘This paper presents a new method to eliminate the chattering of state feedback sliding mode control (SMC) law for the mobile control of an autonomous underwater vehicle (AUV) which is nonlinear and suffers from unknown disturbances system. SMC is a well-known nonlinear system control algorithm for its anti-disturbances capability, while the chattering on switch surface is one stiff question. To dissipate the well-known chattering of SMC, the switching manifold is proposed by presetting a Hurwitz matrix which is deducted from the state feedback matrix. Meanwhile, the best switching surface is achieved by use of eigenvalues of the Hurwitz matrix. The state feedback control parameters are not only applied to control the states of AUV but also connected with coefficients of switching surface. The convergence of the proposed control law is verified by Lyapunov function and the robust character is validated by the Matlab platform of one AUV model.
基金The project supported by the Key Projects of National Natural Science Foundation of China under Grant No. 70431002 and National Natural Science Foundation of China under Grants Nos. 70371068 and 10247005
文摘Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neural network with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network.
基金supported by National Natural Science Foundation of China(61374065,61374002,61503225,61573215)the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe Natural Science Foundation of Shandong Province(ZR2015FQ003)
基金the National Natural Science Foundation of China (No. 50477042)the Ph.D. Programs Foundation of Ministry of Education of China (No. 20040422052 )the National Natural Science Foundation of Shandong Province (No.Z2004G04)
文摘The design of a functional observer and reduced-order observer with internal delay for linear singular timedelay systems with unknown inputs is discussed. The sufficient conditions of the existence of observers, which are normal linear time-delay systems, and the corresponding design steps are presented via linear matrix inequality(LMI). Moreover, the observer-based feedback stabilizing controller is obtained. Three examples are given to show the effectiveness of the proposed methods.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10247005,70071047,and 19875080
文摘The study of controlling high-current proton beam halo-chaos has become a key concerned issue for manyimportant applications. In this paper, time-delayed feedback control method is proposed for beam halo-chaos. Particle incell simulation results show that the method is very effective and has some advantages for high-current beam experimentsand engineering.
基金the National Natural Science Foundation of China (10772159)Specialized Research Fund for the Doctoral Program of Higher Education of China (20060335125)
文摘A strategy for time-delayed feedback control optimization of quasi linear systems with random excitation is proposed. First, the stochastic averaging method is used to reduce the dimension of the state space and to derive the stationary response of the system. Secondly, the control law is assumed to be velocity feedback control with time delay and the unknown control gains are determined by the performance indices. The response of the controlled system is predicted through solving the Fokker-Plank-Kolmogorov equation associated with the averaged Ito equation. Finally, numerical examples are used to illustrate the proposed control method, and the numerical results are confirmed by Monte Carlo simulation .
文摘For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.
基金theNational+4 种基金 Natural Science Foundation of China
文摘In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the solution of an algebraic Riccati equation (ARE) and makes the H∞norm of the closedloop transfer function matrix from disturbance inputs to controlled outputs less than a given constant which ensure the stability of the overall controlled system at each iteration. The given example shows that the convergence of the algorithm is satisfactory.
文摘This paper studies the problem of robust H∞ control design for a class of uncertain interconnected systems via state feedback. This class of systems are described by a state space model, which contains unknown nonlinear interaction and time-varying norm-bounded parametric uncertainties in state equation. Using the Riccati-equation-based approach we design state feedback control laws, which guarantee the decentralized stability with disturbance attenuation for the interconnected uncertain systems. A simple example of an interconnected uncertain linear system is presented to illustrate the results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61068001 and 11264042)the Postdoctoral Science Foundation of China(Grant No.2012M520612)the Talent Program of Yanbian University of China(Grant No.950010001)
文摘A robust and scalable scheme to generate a steady three-dimensional entangled state for a V-type atom and a A- type atom trapped in a strongly dissipative bimodal cavity is proposed by direct feedback control based on quantum-jump detection. The robustness of this scheme reflects in the insensitivity to detection inefficiencies and the strong ability against the parameter fluctuations in the feedback, driving, and coupling strengths. The influence of atomic spontaneous emission can be suppressed by using the local feedback control. The scalability is ensured that N-dimensional entangled states of two atoms can be deterministically generated.
基金This work was supported by the National Natural Science Foundation of China (No. 60474078,60304001).
文摘The state feedback design for singularly perturbed systems described in Delta operator is considered. The composite state feedback controller for slow and fast subsystems is designed by using the direct method. The obtained results can bring previous conclusions of continuous and discrete time systems into the unified Delta framework. A simulation example is presented to demonstrate the validity and efficiency of the design.