期刊文献+
共找到2,318篇文章
< 1 2 116 >
每页显示 20 50 100
A semi-analytical pressure and rate transient analysis model for inner boundary and propped fractures exhibiting dynamic behavior under long-term production conditions
1
作者 Lin-Song Cheng Chong Cao +4 位作者 Quan-Yu Pan Pin Jia Ren-Yi Cao Zhi-Kai Wang Jun-Jie Shi 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2520-2535,共16页
The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative r... The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative relationships for the variations of the inner boundary and propped fractures have not been determined and incorporated in the semi-analytical models for the pressure and rate transient analysis.This work focuses on describing the variations of the inner boundary and propped fractures and capturing the typical characteristics from the pressure transient curves.A generalized semi-analytical model was developed to characterize the dynamic behavior of the inner boundary and propped fractures under long-term production conditions.The pressure-dependent length shrinkage coefficients,which quantify the length changes of the inner zone and propped fractures,are modified and incorporated into this multi-zone semi-analytical model.With simultaneous numerical iterations and numerical inversions in Laplace and real-time space,the transient solutions to pressure and rate behavior are determined in just a few seconds.The dynamic behavior of the inner boundary and propped fractures on transient pressure curves is divided into five periods:fracture bilinear flow(FR1),dynamic PFs flow(FR2),inner-area linear flow(FR3),dynamic inner boundary flow(FR4),and outer-area dominated linear flow(FR5).The early hump during FR2 period and a positive upward shift during FR4period are captured on the log-log pressure transient curves,reflecting the dynamic behavior of the inner boundary and propped fractures during the long-term production period.The transient pressure behavior will exhibit greater positive upward trend and the flow rate will be lower with the shrinkage of the inner boundary.The pressure derivative curve will be upward earlier as the inner boundary shrinks more rapidly.The lower permeability caused by the closure of un-propped fractures in the inner zone results in greater upward in pressure derivative curves.If the permeability loss for the dynamic behavior of the inner boundary caused by the closure of un-propped fractures is neglected,the flow rate will be overestimated in the later production period. 展开更多
关键词 Semi-analytical model Length shrinkage Dynamic behavior Boundary changes transient behavior
在线阅读 下载PDF
Electromechanical Transient Modeling Analysis of Large-Scale New Energy Grid Connection
2
作者 Shichao Cao Yonggang Dong Xiaoying Liu 《Energy Engineering》 EI 2024年第4期1109-1125,共17页
The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance a... The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance as the generator.It is the key technology to realize new energy grid connections’stable and reliable operation.This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor.A new energy storage method is proposed.The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power,state of charge,operation efficiency,dead zone,and inverter constraint.The rapid conversion of energy storage devices absorbs the excess instantaneous kinetic energy caused by interference.The branch transient of the critical cut set in the system can be confined to a limited area.Thus,the virtual synchronizer’s kinetic and potential energy can be efficiently converted into an instantaneous state.The simulation of power system analysis software package(PSASP)verifies the correctness of the theory and algorithm in this paper.This paper provides a theoretical basis for improving the transient stability of new energy-connected power grids. 展开更多
关键词 New energy grid connection transient electromechanical modeling synchronous virtual machine PSASP software energy storage
在线阅读 下载PDF
UAV-based transient electromagnetic 3D forward modeling and inversion and analysis of exploration capability
3
作者 WEI Laonao LIU Yunhe ZHANG Bo 《Global Geology》 2024年第3期154-166,共13页
Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface ex... Unmanned aerial vehicle transient electromagnetic(UAV-TEM)is a novel airborne exploration method that offers advantages such as low cost,simple operation,high exploration efficiency and suitability for near-surface exploration in complex terrain areas.To improve the accuracy of data interpretation in this method,the authors conducted a systematic three-dimensional(3D)forward modeling and inversion of the UAV-TEM.This study utilized the finite element method based on unstructured tetrahedral elements and employed the second-order backward Euler method for time discretization.This allowed for accurate 3D modeling and accounted for the effects of complex terrain.Based on these,the influence characteristics of flight altitudes and the sizes,burial depths,and resistivities of anomalies are compared and analyzed to explore the UAV-TEM systems’exploration capability.Lastly,four typical geoelectrical models of landslides are designed,and the inversion method based on the Gauss-Newton optimization method is used to image the landslide models and analyze the imaging effect of the UAV-TEM method on landslide geohazards.Numerical results showed that UAV-TEM could have better exploration resolution and fine imaging of nearsurface structures,providing important technical support for monitoring,early warning,and preventing landslides and other geological hazards. 展开更多
关键词 UAV 3D forward modeling transient electromagnetic 3D inversion landslide model
在线阅读 下载PDF
Numerical modeling of the 2D time-domain transient electromagnetic secondary field of the line source of the current excitation 被引量:4
4
作者 刘云 王绪本 王贇 《Applied Geophysics》 SCIE CSCD 2013年第2期134-144,235,共12页
To effectively minimize the electromagnetic field response in the total field solution, we propose a numerical modeling method for the two-dimensional (2D) time- domain transient electromagnetic secondary field of t... To effectively minimize the electromagnetic field response in the total field solution, we propose a numerical modeling method for the two-dimensional (2D) time- domain transient electromagnetic secondary field of the line source based on the DuFort- Frankel finite-difference method. In the proposed method, we included the treatment of the earth-air boundary conductivity, calculated the normalized partial derivative of the induced electromotive force (Emf), and determined the forward time step. By extending upward the earth-air interface to the air grid nodes and the zero-value boundary conditions, not only we have a method that is more efficient but also simpler than the total field solution. We computed and analyzed the homogeneous half-space model and the fiat layered model with high precision--the maximum relative error is less than 0.01% between our method and the analytical method--and the solution speed is roughly three times faster than the total-field solution. Lastly, we used the model of a thin body embedded in a homogeneous half-space at different delay times to depict the downward and upward spreading characteristics of the induced eddy current, and the physical interaction processes between the electromagnetic field and the underground low-resistivity body. 展开更多
关键词 Time-domain transient electromagnetics secondary field DuFort-Frankel finite-difference method numerical modeling.
在线阅读 下载PDF
Transient simulation of a pump-turbine with misaligned guide vanes during turbine model start-up 被引量:9
5
作者 Ye-Xiang Xiao Ruo-Fu Xiao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第5期646-655,共10页
Experimental studies of a model pump-turbine S-curve characteristics and its improvement by misaligned guide vanes (MGV) were extended to prototype pump turbine through 3-D transient flow simulations. The unsteady R... Experimental studies of a model pump-turbine S-curve characteristics and its improvement by misaligned guide vanes (MGV) were extended to prototype pump turbine through 3-D transient flow simulations. The unsteady Reynolds-averaged Navier-Stokes equations with the SST turbulence model were used to model the transient flow within the entire flow passage of a reversible pump-turbine with and without misaligned guide vanes during turbine model start-up. The unstable S-curve and its improvement by using misaligned guide vane were verified by model test and simulation. The transient flow calculations were used to clarify the variations of pressure pulse and internal flow behavior in the entire flow passage. The use of misaligned guide vanes can eliminate the S-curve characteristics of a pump-turbine, and can significantly increase the pressure pulse amplitude in the entire flow passage and the runner radial forces during start-up. The MGV only decreased the pulse amplitude on the guide vane suction side when the rotating speed was less than 50% rated speed. The hydraulic reason is that the MGV dramatically changed the flow patterns inside the entire flow passage, and destroyed the symmetry of the flow distribution inside the guide vane and runner. 展开更多
关键词 transient flow. Pump turbine. Misaligned guide vane model test Pressure pulse
在线阅读 下载PDF
Novel Application-oriented Transient Fuel Model of a Port Fuel Injection S. I. Engine 被引量:1
6
作者 WANG Cunlei ZHANG Jianlong YIN Chengliang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期348-357,共10页
Most researches on transient fuel control of port fuel injection S.I. engine are carried out from the perspective of advanced mathematical theories. When it comes to practical control, there exist many limitations alt... Most researches on transient fuel control of port fuel injection S.I. engine are carried out from the perspective of advanced mathematical theories. When it comes to practical control, there exist many limitations although they are more intelligent. In order to overcome the fuel wetting effect of PFI engine, the application-oriented transient fuel control is studied by analyzing the key parameters which are closely related with the engine transient characteristics. Both validity and simplicity are taken into consideration. Based on the fuel wall-wetting theory and popular fuel compensation strategy, short-term transient fuel(STF) and long-term transient fuel(LTF), as well as their individual decay approaches, are introduced. STF is to compensate the drastic fuel film loss caused by sudden throttle change, while the function of LTF is to compensate the fuel film loss by manifold air pressure(p) fluctuation. Each of them has their respective pros and cons. The engine fuel mass and air mass are also calculated for air-fuel ratio(AFR) according to ideal gas state equation and empirical equations. The vehicle acceleration test is designed for model validation. The engine experiences several mild and heavy accelerations corresponding to the gear change during vehicle acceleration. STF and LTF control are triggered reliably. The engine transient fuel control simulation adopts the same inputs as the test to ensure consistency. The logged test data are used to check the model output. The results show that the maximum fuel pulse width(FPW) error reaches 2 ms, and it only occurs under engine heavy acceleration condition. The average FPW error is 0.57 ms. The results of simulation and test are close overall, which indicates the accuracy of steady and transient fuel. The proposed research provides an efficient approach not only suitable for practical engineering application, but also for AFR prediction, fuel consumption calculation, and further studies on emission control. 展开更多
关键词 ENGINE STRATEGY transient FUEL model
在线阅读 下载PDF
Transient Model for Shafting Vibration of Hydro Turbine Generating Sets 被引量:1
7
作者 Zeng Yun Zhang Lixiang +2 位作者 Zhang Chengli Yu Fengrong Qian Jing 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第S1期190-196,共7页
The shafting vibration is closely related to the rotational angular speed.The angular speed of hydro turbine generating sets(HTGS)is rapidly change in fault transient,it maybe reduce the shafting damage.By means of en... The shafting vibration is closely related to the rotational angular speed.The angular speed of hydro turbine generating sets(HTGS)is rapidly change in fault transient,it maybe reduce the shafting damage.By means of energy analysis,the differential equation of shafting vibration for the HTGS is derived,in which include the equation of generator rotor and hydro turbine runner,it can be applied to transient analysis.Shafting model is transformed into first order differential equation groups,and is combined with the motion equation of HTGS to build integrated model.Various additional forces of shafting are taken as input inspire in proposed model,the generality of model is good.At last,the shafting vibration in emergency stop transient is simulated. 展开更多
关键词 hydro TURBINE GENERATING SETS SHAFTING VIBRATION transient model FAULT
在线阅读 下载PDF
Hybrid graded element model for transient heat conduction in functionally graded materials 被引量:4
8
作者 Lei-Lei Cao Qing-Hua Qin Ning Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期128-139,共12页
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a f... This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method. 展开更多
关键词 Graded element model Functionally graded materials Hybrid FEM transient heat conduction
在线阅读 下载PDF
Viscosity Transient Phenomenon during Drop Impact Testing and Its Simple Dynamics Model 被引量:1
9
作者 Chen Liu Yoshikazu Tanaka Yukio Fujimoto 《World Journal of Mechanics》 2015年第3期33-41,共9页
Most soft materials behave as if they were hardened when subjected to an impact force. The strain rate dependence of viscosity resistance is the reason for this behavior. The authors carried out drop impact tests on s... Most soft materials behave as if they were hardened when subjected to an impact force. The strain rate dependence of viscosity resistance is the reason for this behavior. The authors carried out drop impact tests on several types of soft materials under the condition of a flat frontal impact. The impact force waveform of soft materials was found to consist of a thorn-shaped waveform and a succeeding mountain-shaped waveform. Based on our experimental observations, we believe that a large viscosity resistance is rapidly changed to a small resistance in the course of the impact. In the present study, the cause of this distinct waveform is discussed based on a dynamics model. The study applies a standard linear solid (SLS) model in which the viscosity transient phenomenon is considered is applied. Three types of impact force waveforms of actual soft materials are simulated using the SLS model. Some features of the impact force waveform of soft materials can be explained using the SLS model. 展开更多
关键词 Impact Force SOFT Material Standard Linear SOLID model VISCOSITY transient STRAIN Rate DEPENDENCE
在线阅读 下载PDF
Middle cerebral artery occlusion methods in rat versus mouse model of transient focal cerebral ischemic stroke 被引量:1
10
作者 Seunghoon Lee Minkyung Lee +5 位作者 Yunkyung Hong Jinyoung Won Youngjeon Lee Sung-Goo Kang Kyu-Tae Chang Yonggeun Hong 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第7期757-758,共2页
Experimental stroke research commonly employs focal cerebral ischemic rat models (Bederson et al., 1986a; Longa et al., 1989). In human patients, ischemic stroke typically results from thrombotic or embolic occlusio... Experimental stroke research commonly employs focal cerebral ischemic rat models (Bederson et al., 1986a; Longa et al., 1989). In human patients, ischemic stroke typically results from thrombotic or embolic occlusion of a major cerebral artery, usually the mid- dle cerebral artery (MCA). Experimental focal cerebral ischemia models have been employed to mimic human stroke (Durukan and Tatlisumak, 2007). Rodent models of focal cerebral ischemia that do not require craniotomy have been developed using intraluminal suture occlusion of the MCA (MCA occlusion, MCAO) (Rosamond et al., 2008). Furthermore, mouse MCAO models have been wide- ly used and extended to genetic studies of cell death or recovery mechanisms (Liu and McCullough, 2011). Genetically engineered mouse stroke models are particularly useful for evaluation of isch- emic pathophysiology and the design of new prophylactic, neuro- protective, and therapeutic agents and interventions (Armstead et al., 2010). During the past two decades, MCAO surgical techniques have been developed that do not reveal surgical techniques for mouse MCAO model engineering. Therefore, we compared MCAO surgical methods in rats and mice. 展开更多
关键词 MCAO CCA Middle cerebral artery occlusion methods in rat versus mouse model of transient focal cerebral ischemic stroke
在线阅读 下载PDF
Application of transient burning rate model of solid propellant in electrothermal-chemical launch simulation 被引量:6
11
作者 Yan-jie NI Yong JIN +3 位作者 Gang WAN Chun-xia YANG Hai-yuan LI Bao-ming LI 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2016年第2期81-85,共5页
A 30 mm electrothermal-chemical(ETC) gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates(EGGR) of propellants during an... A 30 mm electrothermal-chemical(ETC) gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates(EGGR) of propellants during and after electrical discharges are verified in the experiments. A modified 0D internal ballistic model is established to simulate the ETC launch. According to the measured pressure and electrical parameters, a transient burning rate law including the influence of EGGR coefficient by electric power and pressure gradient(dp/dt) is added into the model. The EGGR coefficient of 4/7 high-nitrogen solid propellant is equal to 0.005 MW-1. Both simulated breech pressure and projectile muzzle velocity accord with the experimental results well. Compared with Woodley's modified burning rate law, the breech pressure curves acquired by the transient burning rate law are more consistent with test results. Based on the parameters calculated in the model, the relationship among propellant burning rate, pressure gradient(dp/dt) and electric power is analyzed. Depending on the transient burning rate law and experimental data, the burning of solid propellant under the condition of plasma is described more accurately. 展开更多
关键词 固体推进剂 内弹道模型 发射模拟 电热化学 燃速特性 瞬态 燃烧速率 应用
在线阅读 下载PDF
SELECTION OF TRANSMISSION LINE MODELS USED IN POWER SYSTEM TRANSIENT SIMULATIONS
12
作者 张小平 陈珩 《Journal of Southeast University(English Edition)》 EI CAS 1992年第2期44-53,共10页
A method used for determining the number of equivalent π sections oftransmission line model according to the frequency range of interest and the model accura-cy defined herein is proposed.Factors influencing the disc... A method used for determining the number of equivalent π sections oftransmission line model according to the frequency range of interest and the model accura-cy defined herein is proposed.Factors influencing the discrepancies between continuous ordistributed parameter and multiple π or lumped parameter models are discussed.Generalconclusions concerning the π section lengths of line models used in transient stability,faulttransient and switching over-voltage studies are drawn.Time-domain simulation resultsconfirm the effectiveness of this method. 展开更多
关键词 power system transient TRANSMISSION LINE modelling FREQUENCY characteristics
在线阅读 下载PDF
NUMERICAL MODEL OF THERMAL TRANSIENT EFFECT IN FIBER OPTIC GYRO
13
作者 陈江平 吕葵 张炎华 《Journal of Shanghai Jiaotong university(Science)》 EI 1999年第1期50-54,共5页
The sensitivity of the interferometric fiber optic gyro in the presence of time varying thermal gradients plays a key role in its performance. It is well known that this sensitivity is due to the difference of index c... The sensitivity of the interferometric fiber optic gyro in the presence of time varying thermal gradients plays a key role in its performance. It is well known that this sensitivity is due to the difference of index changes between the points symmetrical with respect to the middle of the coil. In order to reduce this sensitivity, different winding patterns, such as quadrupolar winding, were introduced to keep the thermal environment of the symmetrical points. In this paper, a numerical model of the transient temperature distribution in the gyro was established. The temperature gradient of the coil was solved in conjugation with the nature convection heat transfer in the aperture between the coil and the case. Effects of the winding pattern and the design of its case were investigated to optimize the design of the interferometric fiber optic gyro. 展开更多
关键词 THERMAL transient effect FIBER OPTIC GYRO NUMERICAL model
在线阅读 下载PDF
Modeling of Propagation and Transformation of Transient Nonlinear Waves on A Current
14
作者 Wojciech Sulisz Maciej Paprota 《China Ocean Engineering》 SCIE EI CSCD 2013年第5期579-592,共14页
A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived sem... A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The results show that the propagation of wave trains is significantly affected by a current. A relatively small current may substantially affect wave train components and the wave train shape. This is observed for both opposing and following current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant nonlinear wave components. 展开更多
关键词 numerical modeling transient waves CURRENT boundary conditions initial conditions
在线阅读 下载PDF
Comparative Study on Electromagnetic and Electrome-chanical Transient Model for Grid-connected Photovoltaic Power System
15
作者 Man Zhang Hao Sun +2 位作者 Zhigang Chen Xiaorong Xie Qirong Jiang 《Energy and Power Engineering》 2013年第4期247-252,共6页
With the development of new energy technology, there are increasing applications of grid-connected photovoltaic power generation system. However, there is little research on development of electromechanical model of l... With the development of new energy technology, there are increasing applications of grid-connected photovoltaic power generation system. However, there is little research on development of electromechanical model of large scale photovoltaic power station. The computational speed will be very slow if electromagnetic transient model is used for stability study because of its complexity. Therefore, study on electromechanical transient model of grid-connected photovoltaic power generation system is of great meaning. In this paper, electromagnetic transient model of photovoltaic power generation system is introduced first, and then a general electromechanical transient model is proposed. These two kinds of simulation model are set up in PSCAD. By comparing the simulation results of two models, the correctness and validity of the electromechanical transient model is verified. It provides reference model for efficient simulation and modeling of grid-connected photovoltaic power station in large-scale power systems. 展开更多
关键词 PHOTOVOLTAIC Power ELECTROMAGNETIC transient model ELECTROMECHANICAL transient model Simulation Comparison
在线阅读 下载PDF
Transient flow of magnetized Maxwell nanofluid: Buongiorno model perspective of Cattaneo-Christov theory
16
作者 M.KHAN A.AHMED J.AHMED 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第4期655-666,共12页
The present research article is devoted to studying the characteristics of Cattaneo-Christov heat and mass fluxes in the Maxwell nanofluid flow caused by a stretching sheet with the magnetic field properties.The Maxwe... The present research article is devoted to studying the characteristics of Cattaneo-Christov heat and mass fluxes in the Maxwell nanofluid flow caused by a stretching sheet with the magnetic field properties.The Maxwell nanofluid is investigated with the impact of the Lorentz force to examine the consequence of a magnetic field on the flow characteristics and the transport of energy.The heat and mass transport mechanisms in the current physical model are analyzed with the modified versions of Fourier’s and Fick’s laws,respectively.Additionally,the well-known Buongiorno model for the nanofluids is first introduced together with the Cattaneo-Christov heat and mass fluxes during the transient motion of the Maxwell fluid.The governing partial differential equations(PDEs)for the flow and energy transport phenomena are obtained by using the Maxwell model and the Cattaneo-Christov theory in addition to the laws of conservation.Appropriate transformations are used to convert the PDEs into a system of nonlinear ordinary differential equations(ODEs).The homotopic solution methodology is applied to the nonlinear differential system for an analytic solution.The results for the time relaxation parameter in the flow,thermal energy,and mass transport equations are discussed graphically.It is noted that higher values of the thermal and solutal relaxation time parameters in the Cattaneo-Christov heat and mass fluxes decline the thermal and concentration fields of the nanofluid.Further,larger values of the thermophoretic force enhance the heat and mass transport in the nanoliquid.Moreover,the Brownian motion of the nanoparticles declines the concentration field and increases the temperature field.The validation of the results is assured with the help of numerical tabular data for the surface velocity gradient. 展开更多
关键词 transient flow Cattaneo-Christov THEORY MAXWELL NANOFLUID Buongiorno model HOMOTOPY analysis method (HAM) solution
在线阅读 下载PDF
3D forward modeling and response characteristics of low-resistivity overburden of the CFS-PML absorbing boundary for ground-well transient electromagnetic method
17
作者 Lijuan Zhao Mingzhong Gao +3 位作者 Nengzhong Lei Hongfei Duan Weizhong Qiu Zhaoying Chen 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第12期1541-1550,共10页
This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of com... This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of complex frequency-shifted perfectly matched layer(CFS-PML)was used for truncation so that the low-frequency electromagnetic wave can be better absorbed at the model boundary.A typical three-dimensional(3D)homogeneous half-space model was established and a low-resistivity cube model was analyzed under the half-space condition.The response patterns and drivers of the low-resistivity cube model were discussed under the influence of a low-resistivity overburden.The absorption boundary conditions of CFS-PML significantly affected the low-frequency electromagnetic waves.For a low-resistivity cube around the borehole,its response curve exhibited a single-peak,and the extreme point of the curve corresponded to the center of the low-resistivity body.When the low-resistivity cube was directly below the borehole,the response curve showed three extreme values(two high and one low),with the low corresponding to the center of the low-resistivity body.The total field response of the low-resistivity overburden was stronger than that of the uniform half-space model due to the low-resistivity shielding effect of electromagnetic waves.When the receiving-transmitting distance gradually increased,the effect of the low-resistivity overburden was gradually weakened,and the response of the low-resistivity cube was strengthened.It was affected by the ratio of the overburden resistivity to the resistivity of the low-resistivity body. 展开更多
关键词 Ground-well transient electromagnetic method CFS-PML boundary condition 3D forward modeling Low-resistivity overburden
在线阅读 下载PDF
Modeling of Transient Thermal Conditions in Cutting
18
作者 T. Augspurger F. Klocke +3 位作者 B. Dobbeler M. Brockmann S. Gierlings A. Lima 《Journal of Mechanics Engineering and Automation》 2017年第3期113-119,共7页
The thermal conditions like the temperature distribution and the heat fluxes during metal cutting have a major influence on the machinability, the tool lifetime, the metallurgical structure and thus the functionality ... The thermal conditions like the temperature distribution and the heat fluxes during metal cutting have a major influence on the machinability, the tool lifetime, the metallurgical structure and thus the functionality of the work piece. This in particular applies for manufacturing processes like milling, drilling and turning for high-value turbomachinery components like impellers, combustion engines and compressors of the aerospace and automotive industry as well as energy generation, which play a major role in modern societies. However, numerous analytical and experimental efforts have been conducted in order to understand the thermal conditions in metal cutting, yet many questions still prevail. Most models are based on a stationary point of view and do not include time dependent effects like in intensity and distribution varying heat sources, varying engagement conditions and progressive tool wear. In order to cover such transient physics an analytical approach based on Green's functions for the solution of the partial differential equations of unsteady heat conduction in solids is used to model entire transient temperature fields. The validation of the model is carried out in orthogonal cutting experiments not only punctually but also for entire temperature fields. For these experiments an integrated measurement of prevailing cutting force and temperature fields in the tool and the chip by means of high-speed thermography were applied. The thermal images were analyzed with regard to thermodynamic energy balancing in order to derive the heat partition between tool, chips and workpiece. The thus calculated heat flow into the tool was subsequently used in order to analytically model the transient volumetric temperature fields in the tool. The described methodology enables the modeling of the transient thermal state in the cutting zone and particular in the tool, which is directly linked to phenomena like tool wear and workpiece surface modifications. 展开更多
关键词 Metal cutting infrared thermography heat sources transient temperature fields model based on Green's functions.
在线阅读 下载PDF
A novel order-reduced thermal-coupling electrochemical model for lithium-ion batteries
19
作者 谢奕展 王舒慧 +1 位作者 王震坡 程夕明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期637-654,共18页
Although the single-particle model enhanced with electrolyte dynamics(SPMe)is simplified from the pseudo-twodimensional(P2D)electrochemical model for lithium-ion batteries,it is difficult to solve the partial differen... Although the single-particle model enhanced with electrolyte dynamics(SPMe)is simplified from the pseudo-twodimensional(P2D)electrochemical model for lithium-ion batteries,it is difficult to solve the partial differential equations of solid–liquid phases in real-time applications.Moreover,working temperatures have a heavy impact on the battery behavior.Hence,a thermal-coupling SPMe is constructed.Herein,a lumped thermal model is established to estimate battery temperatures.The order of the SPMe model is reduced by using both transfer functions and truncation techniques and merged with Arrhenius equations for thermal effects.The polarization voltage drop is then modified through the use of test data because its original model is unreliable theoretically.Finally,the coupling-model parameters are extracted using genetic algorithms.Experimental results demonstrate that the proposed model produces average errors of about 42 mV under 15 constant current conditions and 15 mV under nine dynamic conditions,respectively.This new electrochemicalthermal coupling model is reliable and expected to be used for onboard applications. 展开更多
关键词 lithium-ion batteries order-reduced electrochemical models SPME thermal-coupling model transient polarization voltage drop
在线阅读 下载PDF
Study of the pressure transient behavior of directional wells considering the effect of non-uniform flux distribution
20
作者 Yan-Zhong Liang Bai-Lu Teng Wan-Jing Luo 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1765-1779,共15页
During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it i... During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore. 展开更多
关键词 Directional well Pressure transient behavior Semi-analytical model Non-uniform flux
在线阅读 下载PDF
上一页 1 2 116 下一页 到第
使用帮助 返回顶部