To address the problem of subdividing inflexible rectangular grid models and their poor definition of velocity interfaces,we propose a complex structure triangular net for a minimum traveltime ray tracing global algor...To address the problem of subdividing inflexible rectangular grid models and their poor definition of velocity interfaces,we propose a complex structure triangular net for a minimum traveltime ray tracing global algorithm.Our procedure is:(1) Subdivide a triangle grid based on the Delaunay triangular subdivision criterion and the relationships of the points,lines,and the surfaces in the subdividing area.(2) Define the topology relationships and related concepts of triangular unit ray tracing.(3) The source point and wave arrival points at any time compose the propagating plane wave and the minimum traveltime and secondary source positions are calculated during the plane wave propagation.We adopt the hyperbolic approximation global algorithm for secondary source retrieving.(4) By minimum traveltime ray tracing,collect the path from receiver to source points with the neighborhood point's traveltime and the direction of the secondary source.Numerical simulation examples are given to test the algorithm.The results show that the triangular net ray tracing method demonstrates model subdivision flexibility,precise velocity discontinuity interfaces,and accurate computations.展开更多
After the discovery of the ARECh_(2)(A=alkali or monovalent ions,RE=rare-earth,Ch=chalcogen)triangular lattice quantum spin liquid(QSL)family,a series of its oxide,sulfide,and selenide counterparts has been consistent...After the discovery of the ARECh_(2)(A=alkali or monovalent ions,RE=rare-earth,Ch=chalcogen)triangular lattice quantum spin liquid(QSL)family,a series of its oxide,sulfide,and selenide counterparts has been consistently reported and extensively investigated.While KErTe_(2) represents the initial synthesized telluride member,preserving its triangular spin lattice,it was anticipated that the substantial tellurium ions could impart more pronounced magnetic attributes and electronic structures to this material class.This study delves into the magnetism of KErTe_(2) at finite temperatures through magnetization and electron spin resonance(ESR)measurements.Based on the angular momentum J after spin-orbit coupling(SOC)and symmetry analysis,we obtain the magnetic effective Hamiltonian to describe the magnetism of Er^(3+)in R3m space group.Applying the mean-field approximation to the Hamiltonian,we can simulate the magnetization and magnetic heat capacity of KErTe_(2) in paramagnetic state and determine the crystalline electric field(CEF)parameters and partial exchange interactions.The relatively narrow energy gaps between the CEF ground state and excited states exert a significant influence on the magnetism.For example,small CEF excitations can result in a significant broadening of the ESR linewidth at 2 K.For the fitted exchange interactions,although the values are small,given a large angular momentum J=15/2 after SOC,they still have a noticeable effect at finite temperatures.Notably,the heat capacity data under different magnetic fields along the𝑐axis direction also roughly match our calculated results,further validating the reliability of our analytical approach.These derived parameters serve as crucial tools for future investigations into the ground state magnetism of KErTe_(2).The findings presented herein lay a foundation for exploration of the intricate magnetism within the triangular-lattice delafossite family.展开更多
As a typical two-dimensional frustrated quantum magnet,the triangular-lattice antiferromagnet exhibits a series of exotic states from the complicated interplay of the lattice,spin,electron,and orbit with quantum and t...As a typical two-dimensional frustrated quantum magnet,the triangular-lattice antiferromagnet exhibits a series of exotic states from the complicated interplay of the lattice,spin,electron,and orbit with quantum and thermal fluctuations.From the ground state of a triangular-lattice Heisenberg antiferromagnet with coplanar 120o ordering,a series of magnetization anomalies can manifest under a magnetic field,such as the 1/3 magnetization plateau(Ms/3)and umbrella-shaped phase.This Ms/3 plateau state is recognized as an up-up-down structure stabilized by the quantum effect.By surveying theoretical research and experimental measurements on triangularlattice antiferromagnets,this review article describes the current understanding of the magnetic properties of triple-perovskite antiferromagnets A_(3)MB_(2)O_(9)(A=Ba,Ca,and Sr;M=Co,Ni,and Mn;B=Sb,Nb).Through examining both the bulk properties and spin dynamics,fascinating insights into the quantum effect on the triangular lattice are discussed.展开更多
Background:The injury of the triangular fibrocartilage complex (TFCC) is a common cause of ulnar-sided wrist pain.The aim of this study was to investigate if the high-resolution 3T magnetic resonance imaging (MRI...Background:The injury of the triangular fibrocartilage complex (TFCC) is a common cause of ulnar-sided wrist pain.The aim of this study was to investigate if the high-resolution 3T magnetic resonance imaging (MRI) could demonstrate the detailed complex anatomy of TFCC in Chinese.Methods:Fourteen Chinese cadaveric wrists (from four men and three women;age range at death from 30 to 60 years;mean age at 46 years) and forty healthy Chinese wrists (from 20 healthy volunteers,male/female:10/10;age range from 21 to 53 years with a mean age of 32 years) in Beijing Jishuitan Hospital from March 2014 to March 2016 were included in this study.All cadavers and volunteers had magnetic resonance (MR) examination of the wrist with coronal T 1-weighted and proton density-weighted imaging with fat suppression in three planes,respectively.MR arthrography (MRAr) was performed on one of the cadaveric wrists.Subsequently,all 14 cadaveric wrists were sliced into 2 mm thick slab with band saw (six in coronal plane,four in sagittal plane,and four in axial plane).The MRI features of normal TFCC were analyzed in these specimens and forty healthy wrists.Results:Triangular fibrocartilage,the ulnar collateral ligament,and the meniscal homolog could be best observed on images in coronal plane.The palmar and dorsal radioulnar ligaments were best evaluated in transverse plane.The ulnotriquetral and ulnolunate ligaments were best visualized in sagittal plane.The latter two structures and the volar and dorsal capsules were better demonstrated on MRAr.Conclusion:High-resolution 3T MRI is capable to show the detailed complex anatomy of the TFCC and can provide valuable information for the clinical diagnosis in Chinese.展开更多
Nanofluids have enjoyed a widespread use in many technological applications due to their peculiar properties.Numerical simulations are presented about the unsteady behavior of mixed convection of Fe_(3)O_(4)-water,Fe_...Nanofluids have enjoyed a widespread use in many technological applications due to their peculiar properties.Numerical simulations are presented about the unsteady behavior of mixed convection of Fe_(3)O_(4)-water,Fe_(3)O_(4)-kerosene,Fe_(3)O_(4)-ethylene glycol,and Fe_(3)O_(4)-engine oil nanofluids inside a lid-driven triangular cavity.In particular,a two-component non-homogeneous nanofluid model is used.The bottom wall of the enclosure is insulated,whereas the inclined wall is kept a constant(cold)temperature and various temperature laws are assumed for the vertical wall,namely:θ=1(Case 1),θ=Yð1YÞ(Case 2),andθ=sinð2-YÞ(Case 3).A tilted magnetic field of uniform strength is also present in the fluid domain.From a numerical point of view,the problem is addressed using the Galerkin weighted residual finite element method.The role played by different parameters is assessed,discussed critically and interpreted from a physical standpoint.We find that a higher aspect ratio can produce an increase in the average Nusselt number.Moreover,the Fe_(3)O_(4)-EO and Fe_(3)O_(4)-H2O nanofluids provide the highest and smallest rate of heat transfer,respectively,for all the considered(three variants of)thermal boundary conditions.展开更多
We synthesized a quasi-two-dimensional distorted triangular lattice antiferromagnet Ca3CoNb2O9, in which the effective spin of Co2+is 1/2 at low temperatures, whose magnetic properties were studied by dc susceptibili...We synthesized a quasi-two-dimensional distorted triangular lattice antiferromagnet Ca3CoNb2O9, in which the effective spin of Co2+is 1/2 at low temperatures, whose magnetic properties were studied by dc susceptibility and magnetization techniques. The x-ray diffraction confirms the quality of our powder samples. The large Weiss constant θCW --55 K and the low Neel temperature TN- 1.45 K give a frustration factor f =| θCW/TN|≈ 38, suggesting that Ca3 Co Nb2O9resides in strong frustration regime. Slightly below TN, deviation between the susceptibility data under zero-field cooling(ZFC)and field cooling(FC) is observed. A new magnetic state with 1/3 of the saturate magnetization Ms is suggested in the magnetization curve at 0.46 K. Our study indicates that Ca3 Co Nb2O9is an interesting material to investigate magnetism in triangular lattice antiferromagnets with weak anisotropy.展开更多
The c-axis charge transport of the hole doped triangular antiferromagnet is investigated within the t-J model by considering the incoherent interlayer hopping. It is shown that the c-axis charge transport of the hole ...The c-axis charge transport of the hole doped triangular antiferromagnet is investigated within the t-J model by considering the incoherent interlayer hopping. It is shown that the c-axis charge transport of the hole doped triangular antiferromagnet is essentially determined by the scattering from the in-plane fluctuation. The c-axis conductivity spectrum shows a low-energy peak and the unusual high-energy broad band, while the c-axis resistivity is characterized by a crossover from the high temperature metallic-like behavior to the low temperature insulating-like behavior, which is qualitatively consistent with those of the hole doped square lattice antiferromagnet.展开更多
We use a new updated algorithm scheme to investigate the critical behaviour of the two-dimensional ferromagnetic Ising model on a triangular lattice with the nearest neighbour interactions. The transition is examined ...We use a new updated algorithm scheme to investigate the critical behaviour of the two-dimensional ferromagnetic Ising model on a triangular lattice with the nearest neighbour interactions. The transition is examined by generating accurate data for lattices with L=8, 10, 12, 15, 20, 25, 30, 40 and 50. The updated spin algorithm we employ has the advantages of both a Metropolis algorithm and a single-update method. Our study indicates that the transition is continuous at Тc=3.6403(2). A convincing finite-size scaling analysis of the model yields ν=0.9995(21), β/ν=0.12400(17), γ/v=1.75223(22), γ^1/ν=1.7555(22), α/ν=0.00077(420) (scaling) and α/ν=0.0010(42) (hyperscaling). The present scheme yields more accurate estimates for all the critical exponents than the Monte Carlo method, and our estimates are shown to be in excellent agreement with their predicted values.展开更多
In order to improve the efficiency of learning the triangular membership functions( TMFs) for mining fuzzy association rule( FAR) in dynamic database,a single-pass fuzzy c means( SPFCM)algorithm is combined with the r...In order to improve the efficiency of learning the triangular membership functions( TMFs) for mining fuzzy association rule( FAR) in dynamic database,a single-pass fuzzy c means( SPFCM)algorithm is combined with the real-coded CHC genetic model to incrementally learn the TMFs. The cluster centers resulting from SPFCM are regarded as the midpoint of TMFs. The population of CHC is generated randomly according to the cluster center and constraint conditions among TMFs. Then a new population for incremental learning is composed of the excellent chromosomes stored in the first genetic process and the chromosomes generated based on the cluster center adjusted by SPFCM. The experiments on real datasets show that the number of generations converging to the solution of the proposed approach is less than that of the existing batch learning approach. The quality of TMFs generated by the approach is comparable to that of the batch learning approach. Compared with the existing incremental learning strategy,the proposed approach is superior in terms of the quality of TMFs and time cost.展开更多
A numerical research on magnetohydrodynamic mixed convection flow in a lid-driven trapezoidal enclosure at non-uniform heating of bottom wall has been studied numerically. The enclosure consists of insulated top wall ...A numerical research on magnetohydrodynamic mixed convection flow in a lid-driven trapezoidal enclosure at non-uniform heating of bottom wall has been studied numerically. The enclosure consists of insulated top wall and cold side walls, too. It also contains a heated triangular block (<em>Rot</em> = 0<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span> - 90<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>) located somewhere inside the enclosure. The boundary top wall of the enclosure is moving through uniform speed <em>U</em><sub>0</sub>. The geometry of the model has been represented mathematically by coupled governing equations in accordance with proper boundary conditions and then a two-dimensional Galerkin finite element based numerical approach has been adopted to solve this paper. The numerical computations have been carried out for the wide range of parameters Prandtl number (0.5 ≤ <em>Pr</em> ≤ 2), Reynolds number (60 ≤ <em>Re</em> ≤ 120), Rayleigh number (<em>Ra</em> = 10<sup>3</sup>) and Hartmann number (<em>Ha</em> = 20) taking with different rotations of heated triangular block. The results have been shown in the form of streamlines, temperature patterns or isotherms, average Nusselt number and average bulk temperature of the fluid in the enclosure at non-uniform heating of bottom wall. It is also indicated that both the streamlines, isotherm patterns strongly depend on the aforesaid governing parameters and location of the triangular block but the thermal conductivity of the triangular block has a noteworthy role on the isotherm pattern lines. Moreover, the variation of <em>Nu</em><sub>av</sub> of hot bottom wall and <em>θ</em><sub>av</sub> in the enclosure is demonstrated here to show the characteristics of heat transfer in the enclosure.展开更多
Two novel Co-based clusters with the 2-(hydroxylmethyl)pyridine(hmpH)ligand,formulated as[Co3(hmp)6(hmpH)]×2NO3×3H2O(ZTU-3)and[Co4(hmp)4(CH3CO2)2(H2O)4]×2NO3(ZTU-4),have been successfully synthesized an...Two novel Co-based clusters with the 2-(hydroxylmethyl)pyridine(hmpH)ligand,formulated as[Co3(hmp)6(hmpH)]×2NO3×3H2O(ZTU-3)and[Co4(hmp)4(CH3CO2)2(H2O)4]×2NO3(ZTU-4),have been successfully synthesized and structurally characterized.ZTU-3 features a triangular core geometry,while ZTU-4 exhibits a cuboidal core geometry.In addition,the magnetic properties of ZTU-3 and ZTU-4 are also all investigated.展开更多
BACKGROUND Extragastric lesions are typically not misdiagnosed as gastric submucosal tumor(SMT).However,we encountered two rare cases where extrinsic lesions were misdiagnosed as gastric SMTs.CASE SUMMARY We describe ...BACKGROUND Extragastric lesions are typically not misdiagnosed as gastric submucosal tumor(SMT).However,we encountered two rare cases where extrinsic lesions were misdiagnosed as gastric SMTs.CASE SUMMARY We describe two cases of gastric SMT-like protrusions initially misdiagnosed as gastric SMTs by the abdominal contrast-enhanced computed tomography(CT)and endoscopic ultrasound(EUS).Based on the CT and EUS findings,the patients underwent gastroscopy;however,no tumor was identified after incising the gastric wall.Subsequent surgical exploration revealed no gastric lesions in both patients,but a mass was found in the left triangular ligament of the liver.The patients underwent laparoscopic tumor resection,and the postoperative diagnosis was hepatic hemangiomas.CONCLUSION During EUS procedures,scanning across different layers and at varying degrees of gastric cavity distension,coupled with meticulous image analysis,has the potential to mitigate the likelihood of such misdiagnoses.展开更多
This paper is an introduction to mesh based generated reluctance network modeling using triangular elements.Many contributions on mesh based generated reluctance networks using rectangular shaped elements have been pu...This paper is an introduction to mesh based generated reluctance network modeling using triangular elements.Many contributions on mesh based generated reluctance networks using rectangular shaped elements have been published,but very few on those generated from a mesh using triangular elements.The use of triangular elements is aimed at extending the application of the approach to any shape of modeled devices.Basic concepts of the approach are presented in the case of electromagnetic devices.The procedure for coding the approach in the case of a flat linear permanent magnet machine is presented.Codes developed under MATLAB environment are also included.展开更多
We study the ground state of an S=1/2 anisotropic a (≡Jz/Jxy) Heisenberg antiferromagnet with nearest (J1) and next-nearest (J2) neighbor exchange interactions on a triangular lattice using the exact diagonalization ...We study the ground state of an S=1/2 anisotropic a (≡Jz/Jxy) Heisenberg antiferromagnet with nearest (J1) and next-nearest (J2) neighbor exchange interactions on a triangular lattice using the exact diagonalization method. We obtain the energy, squared sublattice magnetizations, and their Binder ratios on finite lattices with N≤36 sites. We estimate the threshold J(t) 2 (a)?between the three-sublattice Néel state and the spin liquid (SL) state, and J(s) 2 (a)? between the stripe state and the SL state. The SL state exists over a wide range in the α-J2 plane. For α>1 , the xy component of the magnetization is destroyed by quantum fluctuations, and the classical distorted 120°structure is replaced by the collinear state.展开更多
In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state pr...In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state problems on triangular meshes. A troubled cell indicator extended from structured meshes to unstructured meshes is constructed to identify triangular cells in which the application of the limiting procedures is required. In such troubled cells, the multi-resolution WENO limiting methods are used to the hierarchical L^(2) projection polynomial sequence of the DG solution. Through using the RKDG methods with multi-resolution WENO limiters, the optimal high-order accuracy can be gradually reduced to first-order in the triangular troubled cells, so that the shock wave oscillations can be well suppressed. In steady-state simulations on triangular meshes, the numerical residual converges to near machine zero. The proposed spatial reconstruction methods enhance the robustness of classical DG methods on triangular meshes. The good results of these RKDG methods with multi-resolution WENO limiters are verified by a series of two-dimensional steady-state problems.展开更多
In this study, Artificial Neural Network has been employed for analysis of triangular plate with different geometrical and loading parameters. Plates, having different sizes of concentric holes are analyzed. Finite el...In this study, Artificial Neural Network has been employed for analysis of triangular plate with different geometrical and loading parameters. Plates, having different sizes of concentric holes are analyzed. Finite element analysis for 81 cases is carried out using ANSYS Workbench 15.0 software. Using these data of FEM analysis an Artificial Neural Network has been trained. The successfully trained network is further used for analysis of four new cases which are also validated by using ANSYS Workbench 15.0 software.展开更多
Utilizing granular computing to enhance artificial neural network architecture, a newtype of network emerges—thegranular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The a...Utilizing granular computing to enhance artificial neural network architecture, a newtype of network emerges—thegranular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The ability toprocess both numerical and granular data, leading to improved interpretability. This paper proposes a novel designmethod for constructing GNNs, drawing inspiration from existing interval-valued neural networks built uponNNNs. However, unlike the proposed algorithm in this work, which employs interval values or triangular fuzzynumbers for connections, existing methods rely on a pre-defined numerical network. This new method utilizesa uniform distribution of information granularity to granulate connections with unknown parameters, resultingin independent GNN structures. To quantify the granularity output of the network, the product of two commonperformance indices is adopted: The coverage of numerical data and the specificity of information granules.Optimizing this combined performance index helps determine the optimal parameters for the network. Finally,the paper presents the complete model construction and validates its feasibility through experiments on datasetsfrom the UCIMachine Learning Repository. The results demonstrate the proposed algorithm’s effectiveness andpromising performance.展开更多
The phenomena of magneto-hydrodynamic natural convection in a two-dimensional semicircular top enclosure with triangular obstacle in the rectangular cavity were studied numerically. The governing differential equation...The phenomena of magneto-hydrodynamic natural convection in a two-dimensional semicircular top enclosure with triangular obstacle in the rectangular cavity were studied numerically. The governing differential equations are solved by using the most important method which is finite element method (weighted-residual method). The top wall is placed at cold T<sub>c</sub> and bottom wall is heated T<sub>h</sub>. Here the sidewalls of the cavity assumed adiabatic. Also all the wall are occupied to be no-slip condition. A heated triangular obstacle is located at the center of the cavity. The study accomplished for Prandtl number Pr = 0.71;the Rayleigh number Ra = 10<sup>3</sup>, 10<sup>5</sup>, 5 × 10<sup>5</sup>, 10<sup>6</sup> and for Hartmann number Ha = 0, 20, 50, 100. The results represent the streamlines, isotherms, velocity and temperature fields as well as local Nusselt number.展开更多
We study the phase,Larmor and dwell times of a particle scattered off triangular barriers(TBs).It is interesting that the dependences of dwell,reflective phase and Larmor times on the wave number,barrier width and hei...We study the phase,Larmor and dwell times of a particle scattered off triangular barriers(TBs).It is interesting that the dependences of dwell,reflective phase and Larmor times on the wave number,barrier width and height for a pair of mirror-symmetric(MS)exact triangular barriers(ETBs)are quite different,as the two ETBs have quite distinct scattering surfaces.In comparison,the dependence of the transmitted phase or Larmor times is exactly the same,since the transmitted amplitudes are the same for a pair of MS TBs.We further study the Hartman effect by defining the phase and Larmor velocities associated with the phase and Larmor times.We find no barrier width saturation effect for the transmitted and reflected times.This is indicated by the fact that all the velocities approach finite constants that are much smaller than the speed of light in vacuum for TBs with positive-slope impact faces.As for ETBs with vertical left edges,the naive velocities seem to also indicate the absence of the Hartman effect.These are quite distinct from rectangular barriers and may shed new light on the clarification of the tunneling time issues.展开更多
Triangular fibrocartilage complex injuries are common in amateur and professional sports.These injuries are mainly caused by acute or chronic repetitive axial loads on the wrist,particularly on the ulnar side and in a...Triangular fibrocartilage complex injuries are common in amateur and professional sports.These injuries are mainly caused by acute or chronic repetitive axial loads on the wrist,particularly on the ulnar side and in association with rotations or radial/ulnar deviations.In order to treat professional athletes,a detailed specific knowledge of the pathology is needed.Moreover,the clinician should fully understand the specific and unique environment and needs of the athletes,their priorities and goals,the type of sport,the time of the season,and the position played.An early diagnosis and appropriate management with the quickest possible recovery time are the uppermost goals for both the athlete and the surgeon.A compromise between conservative vs surgical indications,athletes’needs and expectations,and financial implications should be achieved.Arthroscopic procedures should be timely planned when indicated as they could allow early diagnosis and treatment at the same time.Conservative measures are often used as first line treatment when possible.Peripheral lesions are treated by arthroscopic repair,whilst central lesions are treated by arthroscopic debridement.Further procedures(such as the Wafer procedure,ulnar osteotomies,etc.)have specific indications and great implications with regard to rehabilitation.展开更多
基金the National Natural Science Foundation of China(Grant Nos.50974081,50774051, 51034003)the Foundation for the Author of National Excellent Doctoral Dissertation of PR China(Grant No.200958)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT0843)the Open Research Fund Program of the State Key Laboratory of Coal Resources and Safe Mining(China University of Mining and Technology, Beijing)(No.2007-07)
文摘To address the problem of subdividing inflexible rectangular grid models and their poor definition of velocity interfaces,we propose a complex structure triangular net for a minimum traveltime ray tracing global algorithm.Our procedure is:(1) Subdivide a triangle grid based on the Delaunay triangular subdivision criterion and the relationships of the points,lines,and the surfaces in the subdividing area.(2) Define the topology relationships and related concepts of triangular unit ray tracing.(3) The source point and wave arrival points at any time compose the propagating plane wave and the minimum traveltime and secondary source positions are calculated during the plane wave propagation.We adopt the hyperbolic approximation global algorithm for secondary source retrieving.(4) By minimum traveltime ray tracing,collect the path from receiver to source points with the neighborhood point's traveltime and the direction of the secondary source.Numerical simulation examples are given to test the algorithm.The results show that the triangular net ray tracing method demonstrates model subdivision flexibility,precise velocity discontinuity interfaces,and accurate computations.
基金supported by the National Science Foundation of China(Grant Nos.U1932215 and 12274186)the National Key Research and Development Program of China(Grant No.2022YFA1402704)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33010100)the Synergetic Extreme Condition User Facility(SECUF)。
文摘After the discovery of the ARECh_(2)(A=alkali or monovalent ions,RE=rare-earth,Ch=chalcogen)triangular lattice quantum spin liquid(QSL)family,a series of its oxide,sulfide,and selenide counterparts has been consistently reported and extensively investigated.While KErTe_(2) represents the initial synthesized telluride member,preserving its triangular spin lattice,it was anticipated that the substantial tellurium ions could impart more pronounced magnetic attributes and electronic structures to this material class.This study delves into the magnetism of KErTe_(2) at finite temperatures through magnetization and electron spin resonance(ESR)measurements.Based on the angular momentum J after spin-orbit coupling(SOC)and symmetry analysis,we obtain the magnetic effective Hamiltonian to describe the magnetism of Er^(3+)in R3m space group.Applying the mean-field approximation to the Hamiltonian,we can simulate the magnetization and magnetic heat capacity of KErTe_(2) in paramagnetic state and determine the crystalline electric field(CEF)parameters and partial exchange interactions.The relatively narrow energy gaps between the CEF ground state and excited states exert a significant influence on the magnetism.For example,small CEF excitations can result in a significant broadening of the ESR linewidth at 2 K.For the fitted exchange interactions,although the values are small,given a large angular momentum J=15/2 after SOC,they still have a noticeable effect at finite temperatures.Notably,the heat capacity data under different magnetic fields along the𝑐axis direction also roughly match our calculated results,further validating the reliability of our analytical approach.These derived parameters serve as crucial tools for future investigations into the ground state magnetism of KErTe_(2).The findings presented herein lay a foundation for exploration of the intricate magnetism within the triangular-lattice delafossite family.
文摘As a typical two-dimensional frustrated quantum magnet,the triangular-lattice antiferromagnet exhibits a series of exotic states from the complicated interplay of the lattice,spin,electron,and orbit with quantum and thermal fluctuations.From the ground state of a triangular-lattice Heisenberg antiferromagnet with coplanar 120o ordering,a series of magnetization anomalies can manifest under a magnetic field,such as the 1/3 magnetization plateau(Ms/3)and umbrella-shaped phase.This Ms/3 plateau state is recognized as an up-up-down structure stabilized by the quantum effect.By surveying theoretical research and experimental measurements on triangularlattice antiferromagnets,this review article describes the current understanding of the magnetic properties of triple-perovskite antiferromagnets A_(3)MB_(2)O_(9)(A=Ba,Ca,and Sr;M=Co,Ni,and Mn;B=Sb,Nb).Through examining both the bulk properties and spin dynamics,fascinating insights into the quantum effect on the triangular lattice are discussed.
文摘Background:The injury of the triangular fibrocartilage complex (TFCC) is a common cause of ulnar-sided wrist pain.The aim of this study was to investigate if the high-resolution 3T magnetic resonance imaging (MRI) could demonstrate the detailed complex anatomy of TFCC in Chinese.Methods:Fourteen Chinese cadaveric wrists (from four men and three women;age range at death from 30 to 60 years;mean age at 46 years) and forty healthy Chinese wrists (from 20 healthy volunteers,male/female:10/10;age range from 21 to 53 years with a mean age of 32 years) in Beijing Jishuitan Hospital from March 2014 to March 2016 were included in this study.All cadavers and volunteers had magnetic resonance (MR) examination of the wrist with coronal T 1-weighted and proton density-weighted imaging with fat suppression in three planes,respectively.MR arthrography (MRAr) was performed on one of the cadaveric wrists.Subsequently,all 14 cadaveric wrists were sliced into 2 mm thick slab with band saw (six in coronal plane,four in sagittal plane,and four in axial plane).The MRI features of normal TFCC were analyzed in these specimens and forty healthy wrists.Results:Triangular fibrocartilage,the ulnar collateral ligament,and the meniscal homolog could be best observed on images in coronal plane.The palmar and dorsal radioulnar ligaments were best evaluated in transverse plane.The ulnotriquetral and ulnolunate ligaments were best visualized in sagittal plane.The latter two structures and the volar and dorsal capsules were better demonstrated on MRAr.Conclusion:High-resolution 3T MRI is capable to show the detailed complex anatomy of the TFCC and can provide valuable information for the clinical diagnosis in Chinese.
文摘Nanofluids have enjoyed a widespread use in many technological applications due to their peculiar properties.Numerical simulations are presented about the unsteady behavior of mixed convection of Fe_(3)O_(4)-water,Fe_(3)O_(4)-kerosene,Fe_(3)O_(4)-ethylene glycol,and Fe_(3)O_(4)-engine oil nanofluids inside a lid-driven triangular cavity.In particular,a two-component non-homogeneous nanofluid model is used.The bottom wall of the enclosure is insulated,whereas the inclined wall is kept a constant(cold)temperature and various temperature laws are assumed for the vertical wall,namely:θ=1(Case 1),θ=Yð1YÞ(Case 2),andθ=sinð2-YÞ(Case 3).A tilted magnetic field of uniform strength is also present in the fluid domain.From a numerical point of view,the problem is addressed using the Galerkin weighted residual finite element method.The role played by different parameters is assessed,discussed critically and interpreted from a physical standpoint.We find that a higher aspect ratio can produce an increase in the average Nusselt number.Moreover,the Fe_(3)O_(4)-EO and Fe_(3)O_(4)-H2O nanofluids provide the highest and smallest rate of heat transfer,respectively,for all the considered(three variants of)thermal boundary conditions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374364 and 11222433)the National Basic Research Program of China(Grant No.2011CBA00112)+2 种基金Research at Mc Master University supported by the Natural Sciences and Engineering Research CouncilWork at North China Electric Power University supported by the Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry
文摘We synthesized a quasi-two-dimensional distorted triangular lattice antiferromagnet Ca3CoNb2O9, in which the effective spin of Co2+is 1/2 at low temperatures, whose magnetic properties were studied by dc susceptibility and magnetization techniques. The x-ray diffraction confirms the quality of our powder samples. The large Weiss constant θCW --55 K and the low Neel temperature TN- 1.45 K give a frustration factor f =| θCW/TN|≈ 38, suggesting that Ca3 Co Nb2O9resides in strong frustration regime. Slightly below TN, deviation between the susceptibility data under zero-field cooling(ZFC)and field cooling(FC) is observed. A new magnetic state with 1/3 of the saturate magnetization Ms is suggested in the magnetization curve at 0.46 K. Our study indicates that Ca3 Co Nb2O9is an interesting material to investigate magnetism in triangular lattice antiferromagnets with weak anisotropy.
文摘The c-axis charge transport of the hole doped triangular antiferromagnet is investigated within the t-J model by considering the incoherent interlayer hopping. It is shown that the c-axis charge transport of the hole doped triangular antiferromagnet is essentially determined by the scattering from the in-plane fluctuation. The c-axis conductivity spectrum shows a low-energy peak and the unusual high-energy broad band, while the c-axis resistivity is characterized by a crossover from the high temperature metallic-like behavior to the low temperature insulating-like behavior, which is qualitatively consistent with those of the hole doped square lattice antiferromagnet.
基金Project supported partially by Guangdong Natural Science Foundation (GDNSF) of China (Grant No 07300793)One of authors(Loan Mushtaq) was partially supported by the Guangdong Ministry of Education,China
文摘We use a new updated algorithm scheme to investigate the critical behaviour of the two-dimensional ferromagnetic Ising model on a triangular lattice with the nearest neighbour interactions. The transition is examined by generating accurate data for lattices with L=8, 10, 12, 15, 20, 25, 30, 40 and 50. The updated spin algorithm we employ has the advantages of both a Metropolis algorithm and a single-update method. Our study indicates that the transition is continuous at Тc=3.6403(2). A convincing finite-size scaling analysis of the model yields ν=0.9995(21), β/ν=0.12400(17), γ/v=1.75223(22), γ^1/ν=1.7555(22), α/ν=0.00077(420) (scaling) and α/ν=0.0010(42) (hyperscaling). The present scheme yields more accurate estimates for all the critical exponents than the Monte Carlo method, and our estimates are shown to be in excellent agreement with their predicted values.
基金Supported by the National Natural Science Foundation of China(No.61301245,U1533104)
文摘In order to improve the efficiency of learning the triangular membership functions( TMFs) for mining fuzzy association rule( FAR) in dynamic database,a single-pass fuzzy c means( SPFCM)algorithm is combined with the real-coded CHC genetic model to incrementally learn the TMFs. The cluster centers resulting from SPFCM are regarded as the midpoint of TMFs. The population of CHC is generated randomly according to the cluster center and constraint conditions among TMFs. Then a new population for incremental learning is composed of the excellent chromosomes stored in the first genetic process and the chromosomes generated based on the cluster center adjusted by SPFCM. The experiments on real datasets show that the number of generations converging to the solution of the proposed approach is less than that of the existing batch learning approach. The quality of TMFs generated by the approach is comparable to that of the batch learning approach. Compared with the existing incremental learning strategy,the proposed approach is superior in terms of the quality of TMFs and time cost.
文摘A numerical research on magnetohydrodynamic mixed convection flow in a lid-driven trapezoidal enclosure at non-uniform heating of bottom wall has been studied numerically. The enclosure consists of insulated top wall and cold side walls, too. It also contains a heated triangular block (<em>Rot</em> = 0<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span> - 90<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>) located somewhere inside the enclosure. The boundary top wall of the enclosure is moving through uniform speed <em>U</em><sub>0</sub>. The geometry of the model has been represented mathematically by coupled governing equations in accordance with proper boundary conditions and then a two-dimensional Galerkin finite element based numerical approach has been adopted to solve this paper. The numerical computations have been carried out for the wide range of parameters Prandtl number (0.5 ≤ <em>Pr</em> ≤ 2), Reynolds number (60 ≤ <em>Re</em> ≤ 120), Rayleigh number (<em>Ra</em> = 10<sup>3</sup>) and Hartmann number (<em>Ha</em> = 20) taking with different rotations of heated triangular block. The results have been shown in the form of streamlines, temperature patterns or isotherms, average Nusselt number and average bulk temperature of the fluid in the enclosure at non-uniform heating of bottom wall. It is also indicated that both the streamlines, isotherm patterns strongly depend on the aforesaid governing parameters and location of the triangular block but the thermal conductivity of the triangular block has a noteworthy role on the isotherm pattern lines. Moreover, the variation of <em>Nu</em><sub>av</sub> of hot bottom wall and <em>θ</em><sub>av</sub> in the enclosure is demonstrated here to show the characteristics of heat transfer in the enclosure.
基金Supported by the National Natural Science Foundation of China(21861044 and 21601137)the Project funded by China Postdoctoral Science Foundation(2018M633426)the Project funded by Yunnan Province Postdoctoral Science Foundation
文摘Two novel Co-based clusters with the 2-(hydroxylmethyl)pyridine(hmpH)ligand,formulated as[Co3(hmp)6(hmpH)]×2NO3×3H2O(ZTU-3)and[Co4(hmp)4(CH3CO2)2(H2O)4]×2NO3(ZTU-4),have been successfully synthesized and structurally characterized.ZTU-3 features a triangular core geometry,while ZTU-4 exhibits a cuboidal core geometry.In addition,the magnetic properties of ZTU-3 and ZTU-4 are also all investigated.
基金Supported by the Natural Science Foundation of Zhejiang Province,No.LQ20H030007 and No.LY20H030010the Zhejiang Medical Health Technology Project,No.2019KY393.
文摘BACKGROUND Extragastric lesions are typically not misdiagnosed as gastric submucosal tumor(SMT).However,we encountered two rare cases where extrinsic lesions were misdiagnosed as gastric SMTs.CASE SUMMARY We describe two cases of gastric SMT-like protrusions initially misdiagnosed as gastric SMTs by the abdominal contrast-enhanced computed tomography(CT)and endoscopic ultrasound(EUS).Based on the CT and EUS findings,the patients underwent gastroscopy;however,no tumor was identified after incising the gastric wall.Subsequent surgical exploration revealed no gastric lesions in both patients,but a mass was found in the left triangular ligament of the liver.The patients underwent laparoscopic tumor resection,and the postoperative diagnosis was hepatic hemangiomas.CONCLUSION During EUS procedures,scanning across different layers and at varying degrees of gastric cavity distension,coupled with meticulous image analysis,has the potential to mitigate the likelihood of such misdiagnoses.
文摘This paper is an introduction to mesh based generated reluctance network modeling using triangular elements.Many contributions on mesh based generated reluctance networks using rectangular shaped elements have been published,but very few on those generated from a mesh using triangular elements.The use of triangular elements is aimed at extending the application of the approach to any shape of modeled devices.Basic concepts of the approach are presented in the case of electromagnetic devices.The procedure for coding the approach in the case of a flat linear permanent magnet machine is presented.Codes developed under MATLAB environment are also included.
文摘We study the ground state of an S=1/2 anisotropic a (≡Jz/Jxy) Heisenberg antiferromagnet with nearest (J1) and next-nearest (J2) neighbor exchange interactions on a triangular lattice using the exact diagonalization method. We obtain the energy, squared sublattice magnetizations, and their Binder ratios on finite lattices with N≤36 sites. We estimate the threshold J(t) 2 (a)?between the three-sublattice Néel state and the spin liquid (SL) state, and J(s) 2 (a)? between the stripe state and the SL state. The SL state exists over a wide range in the α-J2 plane. For α>1 , the xy component of the magnetization is destroyed by quantum fluctuations, and the classical distorted 120°structure is replaced by the collinear state.
基金supported by the NSFC Grant No.11872210 and Grant No.MCMS-I-0120G01Chi-Wang Shu:Research is supported by the AFOSR Grant FA9550-20-1-0055 and the NSF Grant DMS-2010107Jianxian Qiu:Research is supported by the NSFC Grant No.12071392.
文摘In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state problems on triangular meshes. A troubled cell indicator extended from structured meshes to unstructured meshes is constructed to identify triangular cells in which the application of the limiting procedures is required. In such troubled cells, the multi-resolution WENO limiting methods are used to the hierarchical L^(2) projection polynomial sequence of the DG solution. Through using the RKDG methods with multi-resolution WENO limiters, the optimal high-order accuracy can be gradually reduced to first-order in the triangular troubled cells, so that the shock wave oscillations can be well suppressed. In steady-state simulations on triangular meshes, the numerical residual converges to near machine zero. The proposed spatial reconstruction methods enhance the robustness of classical DG methods on triangular meshes. The good results of these RKDG methods with multi-resolution WENO limiters are verified by a series of two-dimensional steady-state problems.
文摘In this study, Artificial Neural Network has been employed for analysis of triangular plate with different geometrical and loading parameters. Plates, having different sizes of concentric holes are analyzed. Finite element analysis for 81 cases is carried out using ANSYS Workbench 15.0 software. Using these data of FEM analysis an Artificial Neural Network has been trained. The successfully trained network is further used for analysis of four new cases which are also validated by using ANSYS Workbench 15.0 software.
基金the National Key R&D Program of China under Grant 2018YFB1700104.
文摘Utilizing granular computing to enhance artificial neural network architecture, a newtype of network emerges—thegranular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The ability toprocess both numerical and granular data, leading to improved interpretability. This paper proposes a novel designmethod for constructing GNNs, drawing inspiration from existing interval-valued neural networks built uponNNNs. However, unlike the proposed algorithm in this work, which employs interval values or triangular fuzzynumbers for connections, existing methods rely on a pre-defined numerical network. This new method utilizesa uniform distribution of information granularity to granulate connections with unknown parameters, resultingin independent GNN structures. To quantify the granularity output of the network, the product of two commonperformance indices is adopted: The coverage of numerical data and the specificity of information granules.Optimizing this combined performance index helps determine the optimal parameters for the network. Finally,the paper presents the complete model construction and validates its feasibility through experiments on datasetsfrom the UCIMachine Learning Repository. The results demonstrate the proposed algorithm’s effectiveness andpromising performance.
文摘The phenomena of magneto-hydrodynamic natural convection in a two-dimensional semicircular top enclosure with triangular obstacle in the rectangular cavity were studied numerically. The governing differential equations are solved by using the most important method which is finite element method (weighted-residual method). The top wall is placed at cold T<sub>c</sub> and bottom wall is heated T<sub>h</sub>. Here the sidewalls of the cavity assumed adiabatic. Also all the wall are occupied to be no-slip condition. A heated triangular obstacle is located at the center of the cavity. The study accomplished for Prandtl number Pr = 0.71;the Rayleigh number Ra = 10<sup>3</sup>, 10<sup>5</sup>, 5 × 10<sup>5</sup>, 10<sup>6</sup> and for Hartmann number Ha = 0, 20, 50, 100. The results represent the streamlines, isotherms, velocity and temperature fields as well as local Nusselt number.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974108,11875127,and 12211530044)the Fundamental Research Funds for the Central Universities(Grant No.2020MS052).
文摘We study the phase,Larmor and dwell times of a particle scattered off triangular barriers(TBs).It is interesting that the dependences of dwell,reflective phase and Larmor times on the wave number,barrier width and height for a pair of mirror-symmetric(MS)exact triangular barriers(ETBs)are quite different,as the two ETBs have quite distinct scattering surfaces.In comparison,the dependence of the transmitted phase or Larmor times is exactly the same,since the transmitted amplitudes are the same for a pair of MS TBs.We further study the Hartman effect by defining the phase and Larmor velocities associated with the phase and Larmor times.We find no barrier width saturation effect for the transmitted and reflected times.This is indicated by the fact that all the velocities approach finite constants that are much smaller than the speed of light in vacuum for TBs with positive-slope impact faces.As for ETBs with vertical left edges,the naive velocities seem to also indicate the absence of the Hartman effect.These are quite distinct from rectangular barriers and may shed new light on the clarification of the tunneling time issues.
文摘Triangular fibrocartilage complex injuries are common in amateur and professional sports.These injuries are mainly caused by acute or chronic repetitive axial loads on the wrist,particularly on the ulnar side and in association with rotations or radial/ulnar deviations.In order to treat professional athletes,a detailed specific knowledge of the pathology is needed.Moreover,the clinician should fully understand the specific and unique environment and needs of the athletes,their priorities and goals,the type of sport,the time of the season,and the position played.An early diagnosis and appropriate management with the quickest possible recovery time are the uppermost goals for both the athlete and the surgeon.A compromise between conservative vs surgical indications,athletes’needs and expectations,and financial implications should be achieved.Arthroscopic procedures should be timely planned when indicated as they could allow early diagnosis and treatment at the same time.Conservative measures are often used as first line treatment when possible.Peripheral lesions are treated by arthroscopic repair,whilst central lesions are treated by arthroscopic debridement.Further procedures(such as the Wafer procedure,ulnar osteotomies,etc.)have specific indications and great implications with regard to rehabilitation.