It is widely recognized by many within the scientific community that the field of seismology faces challenges in aligning with established scientific practices for studying earthquakes. Some views may suggest a relian...It is widely recognized by many within the scientific community that the field of seismology faces challenges in aligning with established scientific practices for studying earthquakes. Some views may suggest a reliance on methods that resemble divination rather than sound scientific inquiry. Despite efforts to understand seismic phenomena over the past three centuries [1], progress in seismology has been perceived as somewhat stagnant. Criticisms have been raised about certain theories, such as Mr. Reid’s Elastic Recoil theory from 1910 [2], and its purported advancements in comprehending seismic processes. While acknowledging various perspectives on this matter [3]-[7], it is important to reflect on the historical context and potential limitations in our understanding. Addressing concerns raised within the discipline involves examining educational practices and fostering a rigorous academic environment to promote scientific excellence. This article aims to explore the underlying factors contributing to the current state of seismology, offering insights into overcoming challenges and fostering advancements that benefit the scientific community and society as a whole.展开更多
Effective management of water resources,especially groundwater,is crucial and requires a precise understanding of aquifer characteristics,imposed stresses,and the groundwater balance.Simulation-optimization models pla...Effective management of water resources,especially groundwater,is crucial and requires a precise understanding of aquifer characteristics,imposed stresses,and the groundwater balance.Simulation-optimization models plays a vital role in guiding planners toword sustainable long-term aquifer exploita-tion.This study simulated monthly water table variations in the Kashan Plain over a ten-year period from 2008 to 2019 across 125 stress periods using the GMS model.The model was calibrated for both steady-state and transient conditions for the 2008–2016 period and validated for the 2016–2019 period.Results indicated a 4.4 m decline in groundwater levels over the 10-year study period.Given the plain's location in a arid climatic zone with limited effective precipitation for aquifer recharge,the study focused on ground-water extraction management.A modified two-point hedging policy was employed as a solution to mitigate critical groundwater depletion,reducing the annual drawdown rate from 0.44 m to 0.31 m and conserving 255 million cubic meters(mcm)of water annually.Although this approach slightly decreased reliability(i.e.the number of months meeting full water demands),it effectively minimized the risk of severe droughts and irreparable damages.This policy offers managers a dynamical and intelligent tool for regulating groundwater extraction,balancing aquifer sustainability with agricultural and urban water requirements.展开更多
The teaching of earth science in Chinese senior high school geography has faced significant challenges,particularly in the compulsory module“The History of the Earth.”Despite being part of the 2019 curriculum reform...The teaching of earth science in Chinese senior high school geography has faced significant challenges,particularly in the compulsory module“The History of the Earth.”Despite being part of the 2019 curriculum reform,current teaching practices often fail to emphasize the geographical nature of the subject,instead treating it as a mix of geology,biology,and historical facts.This paper addresses this challenge by proposing a framework that maintains a geographical focus while teaching earth science concepts.The framework consists of three integrated approaches.First,it introduces a structured method for teaching geological time through an“Eon→Era→Period→Year”progression,helping students build a comprehensive understanding of temporal scales from a geographical perspective.Second,it demonstrates how to effectively use the“Trade Space for Time”method alongside stratigraphic analysis,enabling students to connect spatial and temporal aspects of geographical phenomena.Third,it develops geographical thinking by following the logical pathway of“Fossil→Biology→Environment,”ensuring that biological evidence is interpreted within a geographical context.For successful implementation,the paper recommends two key strategies:managing interdisciplinary content while maintaining geography’s core focus,and emphasizing geographical characteristics throughout specific teaching content.This approach ensures that“The History of the Earth”fulfills its role in developing students’geographical literacy while contributing to their broader understanding of earth science within China’s senior high school curriculum.展开更多
This study investigates the distribution,geochemical behavior,and potential anthropogenic influences of rare earth elements(REEs)in the surface sediments of Qinghai Lake,the largest saline lake in China.A total of 36 ...This study investigates the distribution,geochemical behavior,and potential anthropogenic influences of rare earth elements(REEs)in the surface sediments of Qinghai Lake,the largest saline lake in China.A total of 36 surface sediment samples were analyzed for REE concentrations with a combination of self-organizing maps(SOM)and positive matrix factorization(PMF).Results indicate distinct enrichment patterns,with light REEs(LREEs)exhibiting higher concentrations than heavy REEs(HREEs),reflecting natural abundances and geochemical behaviors.The minimum value was found in Lu as low as 0.091 mg/kg,and the maximum concentration was exhibited in Ce at 78.877 mg/kg.Geoaccumulation index(I_(geo))analysis reveals minor to moderate enrichment of specific REEs of Sm and Nd,suggesting possible localized anthropogenic inputs,particularly near river mouths.Spatial analysis using inverse distance weighting(IDW)and self-organizing maps(SOM)highlights significant correlations between REE distributions and riverine inputs,underscoring fluvial transport's role in sedimentary REE dynamics.PMF identifies mixed natural and anthropogenic sources,with agricultural and industrial activities contributing to elevated REE levels in sediment.These findings provide critical insights into the geochemical behavior of REEs in saline lake systems and off er a foundation for pollution control and sustainable resource management in sensitive environments like Qinghai Lake.展开更多
The Bei Dou satellite system(BDS)has progressed with the full operationalization of the secondgeneration regional system(BDS-2)and the third-generation global system(BDS-3).This technology plays a crucial role in dete...The Bei Dou satellite system(BDS)has progressed with the full operationalization of the secondgeneration regional system(BDS-2)and the third-generation global system(BDS-3).This technology plays a crucial role in determining Earth Rotation Parameters(ERPs).In this study,we determine the ERPs based on the observations of BDS-2,BDS-3 and BDS-2+BDS-3,with the time spanning from August18,2022,to August 18,2023.The IERS EOP 20C04 series is used as a reference to evaluate the accuracy of the ERP estimates.We analyze the impact of different numbers of reference stations,polyhedron volumes,observation arc lengths,satellite types,and satellite systems on solving ERPs using BDS-2 and BDS-3 observation data provided by the International GNSS Service(IGS)stations.When selecting a specific satellite type,it is necessary to choose an appropriate observation arc length based on different numbers of reference stations while maximizing the volume of the formed polyhedron to achieve optimal efficiency and accuracy in parameter estimation.When both the number of reference stations and observation arc length are fixed,higher precision of the ERPs can be achieved using observations from MEO than MEO+IGSO and MEO+IGSO+GEO.Moreover,when considering only IGSO and MEO satellites as options for analysis purposes,BDS-3 provides higher accuracy compared to BDS-2.In summary,when using BDS for ERP estimation and MEO satellite observations with the same observation arc length,selecting stations from reference stations with larger polyhedral volumes can significantly improve the efficiency and accuracy of parameter estimation.展开更多
In February 2025,a startup satellite manufacturer,Albedo(Broomfield,CO,USA)is expected to launch its first satellite,Clarity-1,into orbit aboard SpaceX’s Transporter-13,a Falcon 9 rideshare mission[1].Like many imagi...In February 2025,a startup satellite manufacturer,Albedo(Broomfield,CO,USA)is expected to launch its first satellite,Clarity-1,into orbit aboard SpaceX’s Transporter-13,a Falcon 9 rideshare mission[1].Like many imaging satellites,Clarity-1’s mis-sion will be to take high-resolution aerial photos for clients in var-ious economic sectors including agriculture,insurance,energy,mapping,utilities,and defense.What makes this satellite unique is both its industry-leading 10 cm spatial resolution and its extre-mely low orbit of 200 km,far closer to Earth than the 450 km or higher orbits of most of its peers with similar missions.展开更多
Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
The use of foam,as the most economical soil conditioning technique,in earth pressure balance tunnel boring machine(EPB-TBM)tunneling projects has significant effects on operation efficiency,excavation cost,and operati...The use of foam,as the most economical soil conditioning technique,in earth pressure balance tunnel boring machine(EPB-TBM)tunneling projects has significant effects on operation efficiency,excavation cost,and operation time.This study mainly focuses on developing models to predict the foam(surfactant)consumption.For this purpose,five empirical models are developed based on a database containing 11048 datasets of real-time foam consumption from three EPB-TBM tunneling projects in Iran.This database includes the most effective machine operational parameters and soil geomechanical properties on the foam consumption.Multiple linear regression analysis,multiple non-linear regression analysis,M5Prime decision tree,artificial neural network,and least squares support vector machine techniques are used to construct the models.To evaluate the performance of developed models,three performance evaluation criteria(including normalized root mean square error,variance account for,and coefficient of determination)are used based on the training and testing datasets.The results show that the developed models have high performance and their validity is guaranteed according to the testing dataset.Furthermore,the M5Prime model,which demonstrates the best performance compared to other models,is applied to predict the foam consumption in 19 excavation rings of Kohandezh station in Isfahan metro,Iran.After conducting an excavation operation in this station and comparing the results,it was found that the M5Prime model accurately predicts foam consumption with an average error of less than 13%.Therefore,the developed models,particularly M5Prime model,can be confidently applied in EPB-TBM tunneling projects for predicting foam consumption with a low error rate.展开更多
For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological...For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological index(RSEI)was calculated for the Lijiang River Basin in Guangxi Zhuang Autonomous Region for 1991,2001,2011,and 2021.Spatial autocorrelation analysis was employed to investigate spatiotemporal variations in the ecological environmental quality of the Lijiang River Basin.Furthermore,geographic detectors were used to quantitatively analyze influencing factors and their interaction effects on ecological environmental quality.The results verified that:1)From 1991 to 2021,the ecological environmental quality of the Lijiang River Basin demonstrated significant improvement.The area with good and excellent ecological environmental quality in proportion increased by 19.69%(3406.57 km^(2)),while the area with fair and poor ecological environmental quality in proportion decreased by 10.76%(1860.36 km^(2)).2)Spatially,the ecological environmental quality of the Lijiang River Basin exhibited a pattern of low quality in the central region and high quality in the periphery.Specifically,poor ecological environmental quality characterized the Guilin urban area,Pingle County,and Lingchuan County.3)From 1991 to 2021,a significant positive spatial correlation was observed in ecological environmental quality of the Lijiang River Basin.Areas with high-high agglomeration were predominantly forests and grasslands,indicating good ecological environmental quality,whereas areas with low-low agglomeration were dominated by cultivated land and construction land,indicating poor ecological environmental quality.4)Annual average precipitation and temperature exerted the most significant influence on the ecological environmental quality of the basin,and their interactions with other factors had the great influence.This study aimed to enhance understanding of the evolution of the ecological environment in the Lijiang River Basin of Guangxi Zhuang Autonomous Region and provide scientific guidance for decision-making and management related to ecology in the region.展开更多
Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,wit...Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys.展开更多
The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission...The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission.Lunar lava tubes are special underground caves formed by volcanic eruptions and are considered as ideal natural shelters and scientific laboratories for lunar base construction.This paper begins with an in-depth overview of the geological origins,exploration history,and distribution locations of lunar lava tubes.Subsequently,it delves into the presentation of four distinctive advantages and typical concepts for constructing bases within lava tubes,summarizing the ground-based attempts made thus far in lunar lava tube base construction.Field studies conducted on a lava tube in Hainan revealed rock compositions similar to those found during the Apollo missions and clear lava tube structures,making it a promising analog site.Lastly,the challenges and opportunities encountered in the field of geotechnical engineering regarding the establishment of lunar lava tube bases are discussed,encompassing cave exploration technologies,in-situ testing methods,geomechanical properties under lunar extreme environments,base design and structural stability assessment,excavation and reinforcement techniques,and simulated Earth-based lava tube base.展开更多
文摘It is widely recognized by many within the scientific community that the field of seismology faces challenges in aligning with established scientific practices for studying earthquakes. Some views may suggest a reliance on methods that resemble divination rather than sound scientific inquiry. Despite efforts to understand seismic phenomena over the past three centuries [1], progress in seismology has been perceived as somewhat stagnant. Criticisms have been raised about certain theories, such as Mr. Reid’s Elastic Recoil theory from 1910 [2], and its purported advancements in comprehending seismic processes. While acknowledging various perspectives on this matter [3]-[7], it is important to reflect on the historical context and potential limitations in our understanding. Addressing concerns raised within the discipline involves examining educational practices and fostering a rigorous academic environment to promote scientific excellence. This article aims to explore the underlying factors contributing to the current state of seismology, offering insights into overcoming challenges and fostering advancements that benefit the scientific community and society as a whole.
文摘Effective management of water resources,especially groundwater,is crucial and requires a precise understanding of aquifer characteristics,imposed stresses,and the groundwater balance.Simulation-optimization models plays a vital role in guiding planners toword sustainable long-term aquifer exploita-tion.This study simulated monthly water table variations in the Kashan Plain over a ten-year period from 2008 to 2019 across 125 stress periods using the GMS model.The model was calibrated for both steady-state and transient conditions for the 2008–2016 period and validated for the 2016–2019 period.Results indicated a 4.4 m decline in groundwater levels over the 10-year study period.Given the plain's location in a arid climatic zone with limited effective precipitation for aquifer recharge,the study focused on ground-water extraction management.A modified two-point hedging policy was employed as a solution to mitigate critical groundwater depletion,reducing the annual drawdown rate from 0.44 m to 0.31 m and conserving 255 million cubic meters(mcm)of water annually.Although this approach slightly decreased reliability(i.e.the number of months meeting full water demands),it effectively minimized the risk of severe droughts and irreparable damages.This policy offers managers a dynamical and intelligent tool for regulating groundwater extraction,balancing aquifer sustainability with agricultural and urban water requirements.
基金The 2024 National Education Examination Scientific Research Planning Project“Research on the Boundary of Higher Entrance Examination Questions under the Background of‘Double Reduction’”(GJK2024002)。
文摘The teaching of earth science in Chinese senior high school geography has faced significant challenges,particularly in the compulsory module“The History of the Earth.”Despite being part of the 2019 curriculum reform,current teaching practices often fail to emphasize the geographical nature of the subject,instead treating it as a mix of geology,biology,and historical facts.This paper addresses this challenge by proposing a framework that maintains a geographical focus while teaching earth science concepts.The framework consists of three integrated approaches.First,it introduces a structured method for teaching geological time through an“Eon→Era→Period→Year”progression,helping students build a comprehensive understanding of temporal scales from a geographical perspective.Second,it demonstrates how to effectively use the“Trade Space for Time”method alongside stratigraphic analysis,enabling students to connect spatial and temporal aspects of geographical phenomena.Third,it develops geographical thinking by following the logical pathway of“Fossil→Biology→Environment,”ensuring that biological evidence is interpreted within a geographical context.For successful implementation,the paper recommends two key strategies:managing interdisciplinary content while maintaining geography’s core focus,and emphasizing geographical characteristics throughout specific teaching content.This approach ensures that“The History of the Earth”fulfills its role in developing students’geographical literacy while contributing to their broader understanding of earth science within China’s senior high school curriculum.
基金funded by the Basic Research Program of Qinghai Province(2023-ZJ-910M)。
文摘This study investigates the distribution,geochemical behavior,and potential anthropogenic influences of rare earth elements(REEs)in the surface sediments of Qinghai Lake,the largest saline lake in China.A total of 36 surface sediment samples were analyzed for REE concentrations with a combination of self-organizing maps(SOM)and positive matrix factorization(PMF).Results indicate distinct enrichment patterns,with light REEs(LREEs)exhibiting higher concentrations than heavy REEs(HREEs),reflecting natural abundances and geochemical behaviors.The minimum value was found in Lu as low as 0.091 mg/kg,and the maximum concentration was exhibited in Ce at 78.877 mg/kg.Geoaccumulation index(I_(geo))analysis reveals minor to moderate enrichment of specific REEs of Sm and Nd,suggesting possible localized anthropogenic inputs,particularly near river mouths.Spatial analysis using inverse distance weighting(IDW)and self-organizing maps(SOM)highlights significant correlations between REE distributions and riverine inputs,underscoring fluvial transport's role in sedimentary REE dynamics.PMF identifies mixed natural and anthropogenic sources,with agricultural and industrial activities contributing to elevated REE levels in sediment.These findings provide critical insights into the geochemical behavior of REEs in saline lake systems and off er a foundation for pollution control and sustainable resource management in sensitive environments like Qinghai Lake.
基金received financial support from the National Natural Science Foundation of China(Grant No.42030105,No.42204006,No.42274011,No.42304095)Funded by State Key Laboratory of Geo-Information Engineering and Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of MNR,CASM(Grant No.2024-01-01)+2 种基金Open Fund of Hubei Luojia Laboratory(Grant No.230100020,230100019)the China Postdoctoral Science Foundation(Certificate Number:2023M743580)the Key Project of Natural Science Research in Universities of Anhui Province(No.2023AH051634)。
文摘The Bei Dou satellite system(BDS)has progressed with the full operationalization of the secondgeneration regional system(BDS-2)and the third-generation global system(BDS-3).This technology plays a crucial role in determining Earth Rotation Parameters(ERPs).In this study,we determine the ERPs based on the observations of BDS-2,BDS-3 and BDS-2+BDS-3,with the time spanning from August18,2022,to August 18,2023.The IERS EOP 20C04 series is used as a reference to evaluate the accuracy of the ERP estimates.We analyze the impact of different numbers of reference stations,polyhedron volumes,observation arc lengths,satellite types,and satellite systems on solving ERPs using BDS-2 and BDS-3 observation data provided by the International GNSS Service(IGS)stations.When selecting a specific satellite type,it is necessary to choose an appropriate observation arc length based on different numbers of reference stations while maximizing the volume of the formed polyhedron to achieve optimal efficiency and accuracy in parameter estimation.When both the number of reference stations and observation arc length are fixed,higher precision of the ERPs can be achieved using observations from MEO than MEO+IGSO and MEO+IGSO+GEO.Moreover,when considering only IGSO and MEO satellites as options for analysis purposes,BDS-3 provides higher accuracy compared to BDS-2.In summary,when using BDS for ERP estimation and MEO satellite observations with the same observation arc length,selecting stations from reference stations with larger polyhedral volumes can significantly improve the efficiency and accuracy of parameter estimation.
文摘In February 2025,a startup satellite manufacturer,Albedo(Broomfield,CO,USA)is expected to launch its first satellite,Clarity-1,into orbit aboard SpaceX’s Transporter-13,a Falcon 9 rideshare mission[1].Like many imaging satellites,Clarity-1’s mis-sion will be to take high-resolution aerial photos for clients in var-ious economic sectors including agriculture,insurance,energy,mapping,utilities,and defense.What makes this satellite unique is both its industry-leading 10 cm spatial resolution and its extre-mely low orbit of 200 km,far closer to Earth than the 450 km or higher orbits of most of its peers with similar missions.
文摘Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
文摘The use of foam,as the most economical soil conditioning technique,in earth pressure balance tunnel boring machine(EPB-TBM)tunneling projects has significant effects on operation efficiency,excavation cost,and operation time.This study mainly focuses on developing models to predict the foam(surfactant)consumption.For this purpose,five empirical models are developed based on a database containing 11048 datasets of real-time foam consumption from three EPB-TBM tunneling projects in Iran.This database includes the most effective machine operational parameters and soil geomechanical properties on the foam consumption.Multiple linear regression analysis,multiple non-linear regression analysis,M5Prime decision tree,artificial neural network,and least squares support vector machine techniques are used to construct the models.To evaluate the performance of developed models,three performance evaluation criteria(including normalized root mean square error,variance account for,and coefficient of determination)are used based on the training and testing datasets.The results show that the developed models have high performance and their validity is guaranteed according to the testing dataset.Furthermore,the M5Prime model,which demonstrates the best performance compared to other models,is applied to predict the foam consumption in 19 excavation rings of Kohandezh station in Isfahan metro,Iran.After conducting an excavation operation in this station and comparing the results,it was found that the M5Prime model accurately predicts foam consumption with an average error of less than 13%.Therefore,the developed models,particularly M5Prime model,can be confidently applied in EPB-TBM tunneling projects for predicting foam consumption with a low error rate.
基金supported by the Guangxi Natural Science Foundation(2020GXNSFAA297266)Doctoral Research Foundation of Guilin University of Technology(GUTQDJJ2007059)Guangxi Hidden Metallic Mineral Exploration Key Laboratory。
文摘For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological index(RSEI)was calculated for the Lijiang River Basin in Guangxi Zhuang Autonomous Region for 1991,2001,2011,and 2021.Spatial autocorrelation analysis was employed to investigate spatiotemporal variations in the ecological environmental quality of the Lijiang River Basin.Furthermore,geographic detectors were used to quantitatively analyze influencing factors and their interaction effects on ecological environmental quality.The results verified that:1)From 1991 to 2021,the ecological environmental quality of the Lijiang River Basin demonstrated significant improvement.The area with good and excellent ecological environmental quality in proportion increased by 19.69%(3406.57 km^(2)),while the area with fair and poor ecological environmental quality in proportion decreased by 10.76%(1860.36 km^(2)).2)Spatially,the ecological environmental quality of the Lijiang River Basin exhibited a pattern of low quality in the central region and high quality in the periphery.Specifically,poor ecological environmental quality characterized the Guilin urban area,Pingle County,and Lingchuan County.3)From 1991 to 2021,a significant positive spatial correlation was observed in ecological environmental quality of the Lijiang River Basin.Areas with high-high agglomeration were predominantly forests and grasslands,indicating good ecological environmental quality,whereas areas with low-low agglomeration were dominated by cultivated land and construction land,indicating poor ecological environmental quality.4)Annual average precipitation and temperature exerted the most significant influence on the ecological environmental quality of the basin,and their interactions with other factors had the great influence.This study aimed to enhance understanding of the evolution of the ecological environment in the Lijiang River Basin of Guangxi Zhuang Autonomous Region and provide scientific guidance for decision-making and management related to ecology in the region.
基金supported by National Key Research and Development Program of China[2023YFB4605800]National Natural Science Foundation of China[51935014,52165043]+3 种基金JiangXi Provincial Natural Science Foundation of China[20224ACB204013,20224ACB214008]Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects[20225BCJ23008]Anhui Provincial Natural Science Foundation[2308085ME171]The University Synergy Innovation Program of Anhui Province[GXXT-2023-025,GXXT-2023-026].
文摘Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys.
基金supported by the National Natural Science Foundation of China(Nos.52125903 and 52339001).
文摘The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission.Lunar lava tubes are special underground caves formed by volcanic eruptions and are considered as ideal natural shelters and scientific laboratories for lunar base construction.This paper begins with an in-depth overview of the geological origins,exploration history,and distribution locations of lunar lava tubes.Subsequently,it delves into the presentation of four distinctive advantages and typical concepts for constructing bases within lava tubes,summarizing the ground-based attempts made thus far in lunar lava tube base construction.Field studies conducted on a lava tube in Hainan revealed rock compositions similar to those found during the Apollo missions and clear lava tube structures,making it a promising analog site.Lastly,the challenges and opportunities encountered in the field of geotechnical engineering regarding the establishment of lunar lava tube bases are discussed,encompassing cave exploration technologies,in-situ testing methods,geomechanical properties under lunar extreme environments,base design and structural stability assessment,excavation and reinforcement techniques,and simulated Earth-based lava tube base.