As an alternative or complementary approach to the classical probability theory,the ability of the evidence theory in uncertainty quantification(UQ) analyses is subject of intense research in recent years.Two state-...As an alternative or complementary approach to the classical probability theory,the ability of the evidence theory in uncertainty quantification(UQ) analyses is subject of intense research in recent years.Two state-of-the-art numerical methods,the vertex method and the sampling method,are commonly used to calculate the resulting uncertainty based on the evidence theory.The vertex method is very effective for the monotonous system,but not for the non-monotonous one due to its high computational errors.The sampling method is applicable for both systems.But it always requires a high computational cost in UQ analyses,which makes it inefficient in most complex engineering systems.In this work,a computational intelligence approach is developed to reduce the computational cost and improve the practical utility of the evidence theory in UQ analyses.The method is demonstrated on two challenging problems proposed by Sandia National Laboratory.Simulation results show that the computational efficiency of the proposed method outperforms both the vertex method and the sampling method without decreasing the degree of accuracy.Especially,when the numbers of uncertain parameters and focal elements are large,and the system model is non-monotonic,the computational cost is five times less than that of the sampling method.展开更多
Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a netwo...Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds.展开更多
Based on the uncertainty theory, market demand information updating as the background, we study the coordination and optimization problem of three-stage supply chain in this paper. In half a asymmetric market informat...Based on the uncertainty theory, market demand information updating as the background, we study the coordination and optimization problem of three-stage supply chain in this paper. In half a asymmetric market information, participants are risk neutral;under the situation of the manufacturers and wholesalers having twice pre-season decision-making opportunity, wholesalers can be replenished in the season;manufacturers join the lowest supply contract of commitment: manufacturers for exchanging the information that they cannot get directly from the market will promise wholesalers to have a season lowest supply in pre-season. According to this contract, we establish optimization models of manufacturers and wholesalers respectively, and get the optimal strategy of supply chain members by analyzing the supply chain system. Finally, by giving a numerical example and comparing the results with that under random circumstances, the result is reasonable.展开更多
This paper introduces a novice solution methodology for multi-objective optimization problems having the coefficients in the form of uncertain variables. The embedding theorem, which establishes that the set of uncert...This paper introduces a novice solution methodology for multi-objective optimization problems having the coefficients in the form of uncertain variables. The embedding theorem, which establishes that the set of uncertain variables can be embedded into the Banach space C[0, 1] × C[0, 1] isometrically and isomorphically, is developed. Based on this embedding theorem, each objective with uncertain coefficients can be transformed into two objectives with crisp coefficients. The solution of the original m-objectives optimization problem with uncertain coefficients will be obtained by solving the corresponding 2 m-objectives crisp optimization problem. The R & D project portfolio decision deals with future events and opportunities, much of the information required to make portfolio decisions is uncertain. Here parameters like outcome, risk, and cost are considered as uncertain variables and an uncertain bi-objective optimization problem with some useful constraints is developed. The corresponding crisp tetra-objective optimization model is then developed by embedding theorem. The feasibility and effectiveness of the proposed method is verified by a real case study with the consideration that the uncertain variables are triangular in nature.展开更多
From functions,ornament and art,on the basis of the behavioral theory,the utility of urban public facilities was surveyed and studied with Longhua District of Haikou City as an example.It summed up the basis for desig...From functions,ornament and art,on the basis of the behavioral theory,the utility of urban public facilities was surveyed and studied with Longhua District of Haikou City as an example.It summed up the basis for designing urban public facilities behind behavior habits of residents,in the hope of making future urban construction and management more humanized.Accordingly,it is expected to set up appropriate concept of public facilities,and play especially important role in creating favorable urban living environment.展开更多
This study focuses on investigating the optimal investment strategy for an optimization problem with delay using the uncertainty theory. The financial market is composed of a risk-free asset and a risk asset with an u...This study focuses on investigating the optimal investment strategy for an optimization problem with delay using the uncertainty theory. The financial market is composed of a risk-free asset and a risk asset with an uncertain price process described by an uncertain differential equation. An optimization problem is assumed that its objective is a nonlinear function of decision variable. By deriving the equation of optimality, an analytical solution is obtained for the optimal delay investment strategy, and the optimal delay value function. Finally, an economic analysis and numerical sensitivity analysis are conducted to evaluate the research results.展开更多
Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability ...Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability and are used to modify the cognitive failure probability(CFP).However,the levels of CPCs are usually determined by domain experts,whichmay be subjective and uncertain.What’smore,the classicCREAMassumes that the CPCs are independent,which is unrealistic.Ignoring the dependence among CPCs will result in repeated calculations of the influence of the CPCs on CFP and lead to unreasonable reliability evaluation.To address the issue of uncertain information modeling and processing,this paper introduces evidence theory to evaluate the CPC levels in specific scenarios.To address the issue of dependence modeling,the Decision-Making Trial and Evaluation Laboratory(DEMATEL)method is used to process the dependence among CPCs and calculate the relative weights of each CPC,thus modifying the multiplier of the CPCs.The detailed process of the proposed method is illustrated in this paper and the CFP estimated by the proposed method is more reasonable.展开更多
in this paper, a new approach to relativistic information entropy is used to assess some relative uncertainties in structural reliability assessment. This approach is composed of the information theory and the relativ...in this paper, a new approach to relativistic information entropy is used to assess some relative uncertainties in structural reliability assessment. This approach is composed of the information theory and the relativistic theory, and can be used to measure the relativity of parameter uncertainty and system uncertainty in structural reliability theory based on the same generalized relativistic reference system. Therefore, the structural reliability assessment can be assessed reasonably by the approach.展开更多
基金supported by the Advanced Research of National Defense Foundation of China(426010501)
文摘As an alternative or complementary approach to the classical probability theory,the ability of the evidence theory in uncertainty quantification(UQ) analyses is subject of intense research in recent years.Two state-of-the-art numerical methods,the vertex method and the sampling method,are commonly used to calculate the resulting uncertainty based on the evidence theory.The vertex method is very effective for the monotonous system,but not for the non-monotonous one due to its high computational errors.The sampling method is applicable for both systems.But it always requires a high computational cost in UQ analyses,which makes it inefficient in most complex engineering systems.In this work,a computational intelligence approach is developed to reduce the computational cost and improve the practical utility of the evidence theory in UQ analyses.The method is demonstrated on two challenging problems proposed by Sandia National Laboratory.Simulation results show that the computational efficiency of the proposed method outperforms both the vertex method and the sampling method without decreasing the degree of accuracy.Especially,when the numbers of uncertain parameters and focal elements are large,and the system model is non-monotonic,the computational cost is five times less than that of the sampling method.
基金National Natural Science Foundation of China (61773044,62073009)National key Laboratory of Science and Technology on Reliability and Environmental Engineering(WDZC2019601A301)。
文摘Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds.
文摘Based on the uncertainty theory, market demand information updating as the background, we study the coordination and optimization problem of three-stage supply chain in this paper. In half a asymmetric market information, participants are risk neutral;under the situation of the manufacturers and wholesalers having twice pre-season decision-making opportunity, wholesalers can be replenished in the season;manufacturers join the lowest supply contract of commitment: manufacturers for exchanging the information that they cannot get directly from the market will promise wholesalers to have a season lowest supply in pre-season. According to this contract, we establish optimization models of manufacturers and wholesalers respectively, and get the optimal strategy of supply chain members by analyzing the supply chain system. Finally, by giving a numerical example and comparing the results with that under random circumstances, the result is reasonable.
文摘This paper introduces a novice solution methodology for multi-objective optimization problems having the coefficients in the form of uncertain variables. The embedding theorem, which establishes that the set of uncertain variables can be embedded into the Banach space C[0, 1] × C[0, 1] isometrically and isomorphically, is developed. Based on this embedding theorem, each objective with uncertain coefficients can be transformed into two objectives with crisp coefficients. The solution of the original m-objectives optimization problem with uncertain coefficients will be obtained by solving the corresponding 2 m-objectives crisp optimization problem. The R & D project portfolio decision deals with future events and opportunities, much of the information required to make portfolio decisions is uncertain. Here parameters like outcome, risk, and cost are considered as uncertain variables and an uncertain bi-objective optimization problem with some useful constraints is developed. The corresponding crisp tetra-objective optimization model is then developed by embedding theorem. The feasibility and effectiveness of the proposed method is verified by a real case study with the consideration that the uncertain variables are triangular in nature.
文摘From functions,ornament and art,on the basis of the behavioral theory,the utility of urban public facilities was surveyed and studied with Longhua District of Haikou City as an example.It summed up the basis for designing urban public facilities behind behavior habits of residents,in the hope of making future urban construction and management more humanized.Accordingly,it is expected to set up appropriate concept of public facilities,and play especially important role in creating favorable urban living environment.
文摘This study focuses on investigating the optimal investment strategy for an optimization problem with delay using the uncertainty theory. The financial market is composed of a risk-free asset and a risk asset with an uncertain price process described by an uncertain differential equation. An optimization problem is assumed that its objective is a nonlinear function of decision variable. By deriving the equation of optimality, an analytical solution is obtained for the optimal delay investment strategy, and the optimal delay value function. Finally, an economic analysis and numerical sensitivity analysis are conducted to evaluate the research results.
基金Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Sailing Program(Grant No.20YF1414800)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability and are used to modify the cognitive failure probability(CFP).However,the levels of CPCs are usually determined by domain experts,whichmay be subjective and uncertain.What’smore,the classicCREAMassumes that the CPCs are independent,which is unrealistic.Ignoring the dependence among CPCs will result in repeated calculations of the influence of the CPCs on CFP and lead to unreasonable reliability evaluation.To address the issue of uncertain information modeling and processing,this paper introduces evidence theory to evaluate the CPC levels in specific scenarios.To address the issue of dependence modeling,the Decision-Making Trial and Evaluation Laboratory(DEMATEL)method is used to process the dependence among CPCs and calculate the relative weights of each CPC,thus modifying the multiplier of the CPCs.The detailed process of the proposed method is illustrated in this paper and the CFP estimated by the proposed method is more reasonable.
文摘in this paper, a new approach to relativistic information entropy is used to assess some relative uncertainties in structural reliability assessment. This approach is composed of the information theory and the relativistic theory, and can be used to measure the relativity of parameter uncertainty and system uncertainty in structural reliability theory based on the same generalized relativistic reference system. Therefore, the structural reliability assessment can be assessed reasonably by the approach.