期刊文献+
共找到114篇文章
< 1 2 6 >
每页显示 20 50 100
STRONG CONVERGENCE RATES OF SEVERAL ESTIMATORS IN SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS 被引量:1
1
作者 周勇 尤进红 王晓婧 《Acta Mathematica Scientia》 SCIE CSCD 2009年第5期1113-1127,共15页
This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) prop... This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively. 展开更多
关键词 partially linear regression model varying-coefficient profile leastsquares error variance strong convergence rate law of iterated logarithm
在线阅读 下载PDF
Generalized Likelihood Ratio Tests for Varying-Coefficient Models with Censored Data
2
作者 Rong Jiang Wei-Min Qian 《Open Journal of Statistics》 2011年第1期19-23,共5页
In this paper, we extend the generalized likelihood ratio test to the varying-coefficient models with censored data. We investigate the asymptotic behavior of the proposed test and demonstrate that its limiting null d... In this paper, we extend the generalized likelihood ratio test to the varying-coefficient models with censored data. We investigate the asymptotic behavior of the proposed test and demonstrate that its limiting null distribution follows a distribution, with the scale constant and the number of degree of freedom being independent of nuisance parameters or functions, which is called the wilks phenomenon. Both simulated and real data examples are given to illustrate the performance of the testing approach. 展开更多
关键词 varying coefficient model GENERALIZED LIKELIHOOD RATIO Test Local linear Method Wilks Phenomenon CENSORING
在线阅读 下载PDF
Efficient Shrinkage Estimation about the Partially Linear Varying Coefficient Model with Random Effect for Longitudinal Data
3
作者 Wanbin Li 《Open Journal of Statistics》 2016年第5期862-872,共12页
In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero c... In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero coefficient, the model structure specification is accomplished by introducing a novel penalized estimating equation. Under some mild conditions, the asymptotic properties for the proposed model selection and estimation results, such as the sparsity and oracle property, are established. Some numerical simulation studies and a real data analysis are presented to examine the finite sample performance of the procedure. 展开更多
关键词 Partially linear varying coefficient model Mixed Effect Penalized Estimating Equation
在线阅读 下载PDF
Variable Selection for Semiparametric Varying-Coefficient Partially Linear Models with Missing Response at Random 被引量:9
4
作者 Pei Xin ZHAO Liu Gen XUE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第11期2205-2216,共12页
In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing respo... In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing response at random. The proposed procedure simultaneously selects significant variables in parametric components and nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency of the variable selection procedure and the convergence rate of the regularized estimators. A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure. 展开更多
关键词 Semiparametric varying-coefficient partially linear model variable selection SCAD missing data
原文传递
Penalized profile least squares-based statistical inference for varying coefficient partially linear errors-in-variables models 被引量:2
5
作者 Guo-liang Fan Han-ying Liang Li-xing Zhu 《Science China Mathematics》 SCIE CSCD 2018年第9期1677-1694,共18页
The purpose of this paper is two fold. First, we investigate estimation for varying coefficient partially linear models in which covariates in the nonparametric part are measured with errors. As there would be some sp... The purpose of this paper is two fold. First, we investigate estimation for varying coefficient partially linear models in which covariates in the nonparametric part are measured with errors. As there would be some spurious covariates in the linear part, a penalized profile least squares estimation is suggested with the assistance from smoothly clipped absolute deviation penalty. However, the estimator is often biased due to the existence of measurement errors, a bias correction is proposed such that the estimation consistency with the oracle property is proved. Second, based on the estimator, a test statistic is constructed to check a linear hypothesis of the parameters and its asymptotic properties are studied. We prove that the existence of measurement errors causes intractability of the limiting null distribution that requires a Monte Carlo approximation and the absence of the errors can lead to a chi-square limit. Furthermore, confidence regions of the parameter of interest can also be constructed. Simulation studies and a real data example are conducted to examine the performance of our estimators and test statistic. 展开更多
关键词 diverging number of parameters varying coefficient partially linear model penalized likelihood SCAD variable selection
原文传递
Variable Selection for Generalized Varying Coefficient Partially Linear Models with Diverging Number of Parameters 被引量:1
6
作者 Zheng-yan Lin Yu-ze Yuan 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2012年第2期237-246,共10页
Semiparametric models with diverging number of predictors arise in many contemporary scientific areas. Variable selection for these models consists of two components: model selection for non-parametric components and... Semiparametric models with diverging number of predictors arise in many contemporary scientific areas. Variable selection for these models consists of two components: model selection for non-parametric components and selection of significant variables for the parametric portion. In this paper, we consider a variable selection procedure by combining basis function approximation with SCAD penalty. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of tuning parameters, we establish the consistency and sparseness of this procedure. 展开更多
关键词 generalized linear model varying coefficient high dimensionality SCAD basis function.
原文传递
TESTING SERIAL CORRELATION IN SEMIPARAMETRIC VARYING COEFFICIENT PARTIALLY LINEAR ERRORS-IN-VARIABLES MODEL 被引量:5
7
作者 Xuemei HU Feng LIU Zhizhong WANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第3期483-494,共12页
The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic ... The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic normal distribution under the null hypothesis of no serial correlation.Some MonteCarlo experiments are conducted to examine the finite sample performance of the proposed V_(N,p) teststatistic.Simulation results confirm that the proposed test performs satisfactorily in estimated sizeand power. 展开更多
关键词 Asymptotic normality local linear regression measurement error modified profile leastsquares estimation partial linear model testing serial correlation varying coefficient model.
原文传递
Efficient Estimation for Semiparametric Varying-Coefficient Partially Linear Regression Models with Current Status Data
8
作者 Tao Hu Heng-jian Cui Xing-wei Tong 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第2期195-204,共10页
This article considers a semiparametric varying-coefficient partially linear regression model with current status data. The semiparametric varying-coefficient partially linear regression model which is a generalizatio... This article considers a semiparametric varying-coefficient partially linear regression model with current status data. The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are conducted to examine the small-sample properties of the proposed estimates and a real dataset is used to illustrate our approach. 展开更多
关键词 Partly linear model varying-coefficient current status data asymptotically efficient estimator sieve MLE
原文传递
Testing Serial Correlation in Semiparametric Varying-Coefficient Partially Linear EV Models
9
作者 Xue-mei Hu Zhi-zhong Wang Feng Liu 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2008年第1期99-116,共18页
This paper studies estimation and serial correlation test of a semiparametric varying-coefficient partially linear EV model of the form Y = X^Tβ +Z^Tα(T) +ε,ξ = X + η with the identifying condition E[(ε,... This paper studies estimation and serial correlation test of a semiparametric varying-coefficient partially linear EV model of the form Y = X^Tβ +Z^Tα(T) +ε,ξ = X + η with the identifying condition E[(ε,η^T)^T] =0, Cov[(ε,η^T)^T] = σ^2Ip+1. The estimators of interested regression parameters /3 , and the model error variance σ2, as well as the nonparametric components α(T), are constructed. Under some regular conditions, we show that the estimators of the unknown vector β and the unknown parameter σ2 are strongly consistent and asymptotically normal and that the estimator of α(T) achieves the optimal strong convergence rate of the usual nonparametric regression. Based on these estimators and asymptotic properties, we propose the VN,p test statistic and empirical log-likelihood ratio statistic for testing serial correlation in the model. The proposed statistics are shown to have asymptotic normal or chi-square distributions under the null hypothesis of no serial correlation. Some simulation studies are conducted to illustrate the finite sample performance of the proposed tests. 展开更多
关键词 varying-coefficient model partial linear EV model the generalized least squares estimation serial correlation empirical likelihood
原文传递
Sieve M-estimation for semiparametric varying-coefficient partially linear regression model 被引量:1
10
作者 HU Tao 1,2 & CUI HengJian 1,2 1 School of Mathematical Sciences,Beijing Normal University,Laboratory of Mathematics and Complex Systems,Ministry of Education,Beijing 100875,China 2 School of Mathematical Sciences,Capital Normal University,Beijing 100048,China 《Science China Mathematics》 SCIE 2010年第8期1995-2010,共16页
This article considers a semiparametric varying-coefficient partially linear regression model.The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear ... This article considers a semiparametric varying-coefficient partially linear regression model.The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable.A sieve M-estimation method is proposed and the asymptotic properties of the proposed estimators are discussed.Our main object is to estimate the nonparametric component and the unknown parameters simultaneously.It is easier to compute and the required computation burden is much less than the existing two-stage estimation method.Furthermore,the sieve M-estimation is robust in the presence of outliers if we choose appropriate ρ(·).Under some mild conditions,the estimators are shown to be strongly consistent;the convergence rate of the estimator for the unknown nonparametric component is obtained and the estimator for the unknown parameter is shown to be asymptotically normally distributed.Numerical experiments are carried out to investigate the performance of the proposed method. 展开更多
关键词 partly linear model varying-coefficient robustness optimal convergence rate asymptotic NORMALITY
原文传递
Efficient Estimation of a Varying-coefficient Partially Linear Binary Regression Model
11
作者 TaoHU Heng Jian CUI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第11期2179-2190,共12页
This article considers a semiparametric varying-coefficient partially linear binary regression model. The semiparametric varying-coefficient partially linear regression binary model which is a generalization of binary... This article considers a semiparametric varying-coefficient partially linear binary regression model. The semiparametric varying-coefficient partially linear regression binary model which is a generalization of binary regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. One of our main objects is to estimate nonparametric component and the unknowen parameters simultaneously. It is easier to compute, and the required computation burden is much less than that of the existing two-stage estimation method. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained, and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are carried out to investigate the performance of the proposed method. 展开更多
关键词 Partially linear model varying-coefficient binary regression asymptotically efficient estimator sieve MLE
原文传递
Inference on Varying-Coefficient Partially Linear Regression Model
12
作者 Jing-yan FENG Ri-quan ZHANG Yi-qiang LU 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2015年第1期139-156,共18页
The varying-coefficient partially linear regression model is proposed by combining nonparametric and varying-coefficient regression procedures. Wong, et al. (2008) proposed the model and gave its estimation by the l... The varying-coefficient partially linear regression model is proposed by combining nonparametric and varying-coefficient regression procedures. Wong, et al. (2008) proposed the model and gave its estimation by the local linear method. In this paper its inference is addressed. Based on these estimates, the generalized like- lihood ratio test is established. Under the null hypotheses the normalized test statistic follows a x2-distribution asymptotically, with the scale constant and the degrees of freedom being independent of the nuisance param- eters. This is the Wilks phenomenon. Furthermore its asymptotic power is also derived, which achieves the optimal rate of convergence for nonparametric hypotheses testing. A simulation and a real example are used to evaluate the performances of the testing procedures empirically. 展开更多
关键词 asymptotic normality varying-coefficient partially linear regression model generalized likelihoodratio test Wilks phenomenon xi-distribution.
原文传递
空间自相关性异质特征的局部极大似然估计及在手足口病防护中的应用
13
作者 杨晓兰 张辉国 胡锡健 《广西师范大学学报(自然科学版)》 北大核心 2025年第2期179-192,共14页
空间自回归模型广泛用于空间数据的相关性分析,它将空间自回归系数设定为全局常数,对空间自相关性的同质特征进行建模,但是无法分析研究区域内局部异质的空间自相关特征。本文研究一类异质性空间自回归变系数模型,将模型中的空间自相关... 空间自回归模型广泛用于空间数据的相关性分析,它将空间自回归系数设定为全局常数,对空间自相关性的同质特征进行建模,但是无法分析研究区域内局部异质的空间自相关特征。本文研究一类异质性空间自回归变系数模型,将模型中的空间自相关回归系数设为随地理位置发生变化的变系数函数,实现同时对空间自相关性的局部异质特征和非平稳回归关系建模,提出异质性空间自回归变系数模型的局部常数极大似然和局部线性极大似然估计方法。进行数值模拟,结果表明:局部线性极大似然估计和局部常数极大似然估计方法在有限样本下具有一致性和有效性,本文所提出的模型和估计方法具有良好表现。利用所研究的模型和提出的估计方法对2018年我国手足口病发病率与影响因素进行分析,发现各省(自治区、直辖市)的局部空间自相关性呈现西部偏高,中部和东部偏低的趋势,存在一定差异性,各影响因素对手足口病发病率的影响程度也随空间位置的变化而有所不同。 展开更多
关键词 异质性空间自回归变系数模型 空间自相关异质性 局部常数极大似然 局部线性极大似然 手足口病
在线阅读 下载PDF
Parameter Estimation of Varying Coefficients Structural EV Model with Time Series 被引量:1
14
作者 Yan Yun SU Heng Jian CUI Kai Can LI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2017年第5期607-619,共13页
In this paper, the parameters of a p-dimensional linear structural EV(error-in-variable)model are estimated when the coefficients vary with a real variable and the model error is time series.The adjust weighted least ... In this paper, the parameters of a p-dimensional linear structural EV(error-in-variable)model are estimated when the coefficients vary with a real variable and the model error is time series.The adjust weighted least squares(AWLS) method is used to estimate the parameters. It is shown that the estimators are weakly consistent and asymptotically normal, and the optimal convergence rate is also obtained. Simulations study are undertaken to illustrate our AWLSEs have good performance. 展开更多
关键词 varying coefficient EV model adjust weighted least squares estimators linear stationary time series CONSISTENCY asymptotic normality
原文传递
Shrinkage Estimation of Semiparametric Model with Missing Responses for Cluster Data
15
作者 Mingxing Zhang Jiannan Qiao +1 位作者 Huawei Yang Zixin Liu 《Open Journal of Statistics》 2015年第7期768-776,共9页
This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is... This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is well known, commonly used approach to deal with missing data is complete-case data. Combined the idea of complete-case data with a discussion of shrinkage estimation is made on different cluster. In order to avoid the biased results as well as improve the estimation efficiency, this article introduces Group Least Absolute Shrinkage and Selection Operator (Group Lasso) to semiparametric model. That is to say, the method combines the approach of local polynomial smoothing and the Least Absolute Shrinkage and Selection Operator. In that case, it can conduct nonparametric estimation and variable selection in a computationally efficient manner. According to the same criterion, the parametric estimators are also obtained. Additionally, for each cluster, the nonparametric and parametric estimators are derived, and then compute the weighted average per cluster as finally estimators. Moreover, the large sample properties of estimators are also derived respectively. 展开更多
关键词 SEMIPARAMETRIC PARTIALLY linear varying-coefficient model MISSING RESPONSES CLUSTER DATA Group Lasso
在线阅读 下载PDF
部分线性变系数空间自回归模型的惩罚轮廓拟最大似然方法 被引量:1
16
作者 李体政 方可 《工程数学学报》 CSCD 北大核心 2024年第4期659-676,共18页
主要研究了部分线性变系数空间自回归模型的变量选择问题。结合拟最大似然方法、局部线性光滑方法以及一类非凸罚函数,提出了一个变量选择方法用于同时选择该模型的参数部分中重要解释变量和估计相应的非零参数。大量模拟研究表明,所提... 主要研究了部分线性变系数空间自回归模型的变量选择问题。结合拟最大似然方法、局部线性光滑方法以及一类非凸罚函数,提出了一个变量选择方法用于同时选择该模型的参数部分中重要解释变量和估计相应的非零参数。大量模拟研究表明,所提出的变量选择方法具有满意的有限样本性质,并且关于空间权矩阵的稀疏度、空间相关强度、系数函数的复杂度以及误差分布的非正态性非常稳健。特别地,当样本容量较大且罚函数选择合适时,即使解释变量的相关性较强或者模型中含有较多不重要解释变量,所提出的变量选择方法仍然具有比较满意的有限样本性质。通过分析波士顿房屋价格数据考察了所提出的变量选择方法的实际应用效果。 展开更多
关键词 空间相关 部分线性变系数空间自回归模型 拟最大似然方法 局部线性光滑方法 惩罚似然方法
在线阅读 下载PDF
基于辅助回归的面板数据固定效应变系数模型的估计
17
作者 杨宜平 覃少红 赵培信 《应用概率统计》 CSCD 北大核心 2024年第4期608-624,共17页
本文针对面板数据固定效应变系数模型引入辅助回归来解释个体效应与协变量之间的关系,以此来处理固定效应,将模型转化为部分线性变系数模型.为了获得系数函数的估计,采用正交投影的方法消除固定效应,进一步基于局部线性估计对系数函数... 本文针对面板数据固定效应变系数模型引入辅助回归来解释个体效应与协变量之间的关系,以此来处理固定效应,将模型转化为部分线性变系数模型.为了获得系数函数的估计,采用正交投影的方法消除固定效应,进一步基于局部线性估计对系数函数进行估计.在一些正则条件下,给出了系数函数估计的渐近性质.随后,模拟研究了所提出的估计方法的有限样本性质.模拟结果表明无论个体效应是随机的还是固定的,本文方法优于已有的方法.最后,对艾滋病人的CD4数据进行了实证分析. 展开更多
关键词 面板数据 固定效应 变系数模型 局部线性估计
在线阅读 下载PDF
协变量随机右删失时变系数模型的估计
18
作者 柴旺 尹俊平 孙志华 《应用概率统计》 CSCD 北大核心 2024年第5期800-818,共19页
数据经常因为个体失访,退出实验或者研究结束而出现右删失的现象.右删失数据的研究吸引了很多研究者的兴趣.文献中大部分研究集中在响应变量出现右删失的情况.回归模型中的协变量也可能出现右删失,但相关的研究并不多.本文研究协变量随... 数据经常因为个体失访,退出实验或者研究结束而出现右删失的现象.右删失数据的研究吸引了很多研究者的兴趣.文献中大部分研究集中在响应变量出现右删失的情况.回归模型中的协变量也可能出现右删失,但相关的研究并不多.本文研究协变量随机右删失时变系数模型的估计问题.我们利用逆概率加权方法直接对目标函数进行调整,而不是调整被删失的协变量,来处理数据的删失.所得估计的渐近性质得到严格证明.通过数值模拟和实例分析,可以看到本文所提方法具有很好的有限样本性质. 展开更多
关键词 变系数模型 局部线性估计 随机右删失协变量 渐近性质
在线阅读 下载PDF
数字普惠金融对生猪养殖全要素生产率影响的研究——基于部分线性变系数面板模型的考察 被引量:1
19
作者 王善高 彭翀宇 吴思颖 《黑龙江畜牧兽医》 CAS 北大核心 2024年第24期1-8,15,共9页
为了探究数字普惠金融对生猪养殖全要素生产率的影响,助力生猪养殖业实现高质量发展,本研究基于2011—2020年我国生猪养殖的省际面板数据,先利用变系数随机前沿生产函数测算生猪养殖全要素生产率(TFP),然后利用部分线性变系数面板模型... 为了探究数字普惠金融对生猪养殖全要素生产率的影响,助力生猪养殖业实现高质量发展,本研究基于2011—2020年我国生猪养殖的省际面板数据,先利用变系数随机前沿生产函数测算生猪养殖全要素生产率(TFP),然后利用部分线性变系数面板模型考察数字普惠金融及其子指标对生猪养殖TFP的影响。结果表明:2011—2020年,我国生猪养殖TFP总体呈现增长趋势,但受非洲猪瘟疫情影响,2018年后有略微的下降。数字普惠金融对生猪养殖TFP有显著的正向影响,并且这种正向影响会随着时间的推移越来越大。从数字普惠金融的子指标来看,覆盖广度指数、使用深度指数、数字化程度指数对生猪养殖TFP均有显著的促进作用。其中,覆盖广度指数的促进作用最大,数字化程度指数的促进作用次之,而使用深度指数的促进作用最小。基于以上研究结论,笔者提出应加强互联网基础设施建设,打造健康的数字普惠金融生态,提升数字普惠金融的服务质效,政府通过培训、宣讲、发放宣传折页等形式提高生猪养殖主体的金融素养,消除认知偏差,促进生猪养殖主体接受数字普惠金融服务,以促进生猪养殖业实现高质量发展。 展开更多
关键词 数字普惠金融 生猪养殖 全要素生产率 变系数随机前沿生产函数 部分线性变系数面板模型
原文传递
基于加权复合分位数回归的变系数部分线性模型的稳健经验似然估计
20
作者 叶芸莉 赵培信 《齐鲁工业大学学报》 CAS 2024年第2期73-80,共8页
研究了变系数部分线性模型的稳健经验似然推断问题。利用加权复合分位数回归以及经验似然方法,并结合基于矩阵QR分解的正交投影技术,对模型的参数分量提出了一种基于加权复合分数回归的经验似然估计方法。理论证明了提出的经验对数似然... 研究了变系数部分线性模型的稳健经验似然推断问题。利用加权复合分位数回归以及经验似然方法,并结合基于矩阵QR分解的正交投影技术,对模型的参数分量提出了一种基于加权复合分数回归的经验似然估计方法。理论证明了提出的经验对数似然比函数渐近服从卡方分布,得到参数分量的置信区间。该估计方法中引入了基于矩阵QR分解的正交投影技术,保证对模型的参数分量进行估计时不会受到非参数分量估计精度的影响,因此具有较好的稳健性和有效性。 展开更多
关键词 加权复合分位数回归 部分线性变系数模型 稳健经验似然 正交投影
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部