期刊文献+
共找到399,269篇文章
< 1 2 250 >
每页显示 20 50 100
Fabrication of a Bi-layer Tubular Scaffold Consisted of a Dense Nanofibrous Inner Layer and a Porous Nanoyarn Outer Layer for Vascular Tissue Engineering
1
作者 CHEN Jian-feng LIU Wei +4 位作者 WU Tong LI Da-wei ZHANG Jian-guang WANG Nan-ping MO Xiu-mei 《Journal of Donghua University(English Edition)》 EI CAS 2014年第5期718-722,共5页
Recent years, it has attracted more attentions to increase the porosity and pore size of nanofibrous scaffolds to provide the for the cells to grow into the small-diameter vascular grafts. In this study, a novel bi-la... Recent years, it has attracted more attentions to increase the porosity and pore size of nanofibrous scaffolds to provide the for the cells to grow into the small-diameter vascular grafts. In this study, a novel bi-layer tubular scaffold with an inner layer and an outer layer was fabricated. The inner layer was random collagen/poly ( L-lactide-co-caprolactone ) I P ( LLA- CL) ] nanofibrous mat fabricated by conventional electrospinning and the outer layer was aligned collagen/P (LLA-CL) nanoyarns prepared by a dynamic liquid dectrospinning method. Fourier transform infrared spectroscopy (FTIR) was used to characterize the chemical structure. Scanning electron microscopy ( SEM ) was employed to observe the morphology of the layers and the cross- sectioned bi-layer tubular scaffold. A liquid displacement method was employed to measure the porosities of the inner and outer layers. Stress-strain curves were obtained to evaluate the mechanical properties of the two different layers and the bi-layer membrane. The diameters of the nanofibers and the nanoyarns were (480 ± 197 ) nm and ( 19.66 ± 4.05 ) μm, respectively. The outer layer had a significantly higher porosity and a larger pore size than those of the inner layer. Furthermore, the bi-layer membrane showed a good mechanical property which was suitable as small-diameter vascular graft. The results indicated that the bi-layer tubular scaffold had a great potential application in small vascular tissue engineering. 展开更多
关键词 nanoyarn poly ( L-lactide-co-caprolactone ) [ P ( LLA-CL ) ] BI-LAYER tubular scaffold POROUS structure small vascular tissueengineering
在线阅读 下载PDF
Biomaterials and tissue engineering in traumatic brain injury:novel perspectives on promoting neural regeneration 被引量:2
2
作者 Shihong Zhu Xiaoyin Liu +7 位作者 Xiyue Lu Qiang Liao Huiyang Luo Yuan Tian Xu Cheng Yaxin Jiang Guangdi Liu Jing Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2157-2174,共18页
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. ... Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential. 展开更多
关键词 bioactive materials BIOMATERIALS EXOSOMES neural regeneration scaffolds stem cells tissue engineering traumatic brain injury
在线阅读 下载PDF
Epidermal stem cells and skin tissue engineering in hair follicle regeneration 被引量:8
3
作者 María Eugenia Balaná Hernán Eduardo Charreau Gustavo Jose Leirós 《World Journal of Stem Cells》 SCIE CAS 2015年第4期711-727,共17页
The reconstitution of a fully organized and functional hair follicle from dissociated cells propagated under defined tissue culture conditions is a challenge stillpending in tissue engineering. The loss of hair follic... The reconstitution of a fully organized and functional hair follicle from dissociated cells propagated under defined tissue culture conditions is a challenge stillpending in tissue engineering. The loss of hair follicles caused by injuries or pathologies such as alopecia not only affects the patients' psychological well-being, but also endangers certain inherent functions of the skin. It is then of great interest to find different strategies aiming to regenerate or neogenerate the hair follicle under conditions proper of an adult individual. Based upon current knowledge on the epithelial and dermal cells and their interactions during the embryonic hair generation and adult hair cycling, many researchers have tried to obtain mature hair follicles using different strategies and approaches depending on the causes of hair loss. This review summarizes current advances in the different experimental strategies to regenerate or neogenerate hair follicles, with emphasis on those involving neogenesis of hair follicles in adult individuals using isolated cells and tissue engineering. Most of these experiments were performed using rodent cells, particularly from embryonic or newborn origin. However, no successful strategy to generate human hair follicles from adult cells has yet been reported. This review identifies several issues that should be considered to achieve this objective. Perhaps the most important challenge is to provide threedimensional culture conditions mimicking the structure of living tissue. Improving culture conditions that allow the expansion of specific cells while protecting their inductive properties, as well as methods for selecting populations of epithelial stem cells, should give us the necessary tools to overcome the difficulties that constrain human hair follicle neogenesis. An analysis of patent trends shows that the number of patent applications aimed at hair follicle regeneration and neogenesis has been increasing during the last decade. This field is attractive not only to academic researchers but also to the companies that own almost half of the patents in this field. 展开更多
关键词 Adult stem cells Skin GRAFTS EPIDERMIS Multipotential differentiation tissue REGENERATION DERMAL PAPILLA Epithelial-mesenchymal interactions
在线阅读 下载PDF
Realization Feature of Mesenchymal Dermal Cells Tissue Engineering Construction Response in Granulating Wound Transplantation in Relation with Time-Frame
4
作者 Elena Petersen 《Journal of Cosmetics, Dermatological Sciences and Applications》 2012年第3期126-129,共4页
Derma is progenitor cells sours, that are able to differentiate further in several mesodermal lineage and neural and endodermal lineage. Culture conditions, skin taking site and culture medium composition considerably... Derma is progenitor cells sours, that are able to differentiate further in several mesodermal lineage and neural and endodermal lineage. Culture conditions, skin taking site and culture medium composition considerably contribute to it. Spheroid cultured mesenchymal dermal cells contribution to skin regeneration in granulating wound in rat model was estimated. 展开更多
关键词 Brief Report 3D CULTIVATED tissue engineering CONSTRUCTION Skin MESENCHYMAL DERMAL CELLS SPROUTING Capillary-Like Structures
在线阅读 下载PDF
Constructing a biofunctionalized 3D-printed gelatin/sodium alginate/chitosan tri-polymer complex scaffold with improvised biological andmechanical properties for bone-tissue engineering
5
作者 Amit Kumar Singh Krishna Pramanik Amit Biswas 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期57-73,共17页
Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of... Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering. 展开更多
关键词 SCAFFOLD Biomaterial Sodium alginate CHITOSAN GELATIN 3D printing tissue engineering
在线阅读 下载PDF
Perspectives on endogenous and exogenous tissue engineering following injury to tissues of the knee
6
作者 David A. Hart 《Journal of Biomedical Science and Engineering》 2014年第2期58-66,共9页
The knee is a multi-component organ system comprised of several tissues which function coordinately to provide mobility. Injury to any one component compromises the integrity of the system and leads to adaptation of t... The knee is a multi-component organ system comprised of several tissues which function coordinately to provide mobility. Injury to any one component compromises the integrity of the system and leads to adaptation of the other components. Over time, such events often lead to dysfunction and degeneration of the knee. Therefore, there has been considerable research emphasis to repair injured components in the knee including cartilage, menisci, and ligaments. Approaches to improving healing and repair/regeneration of knee tissues have included surgery, anti-sense gene therapy, injection of growth factors and inflammatory cytokine antagonists, transplantation of in vitro expanded chondrocytes, enhancement of endogenous cells via microfracture, injection of mesenchymal stem cells, and implantation of in vitro tissue engineered constructs. Some of these approaches have lead to temporary improvement in knee functioning, while others offer the potential to restore function and tissue integrity for longer periods of time. This article will review the status of many of these approaches, and provide a perspective on their limitations and potential to contribute to restoration of knee function across the lifespan. 展开更多
关键词 The KNEE as an ORGAN tissue engineering MESENCHYMAL Stem Cells Joint INJURY Repair
在线阅读 下载PDF
Biomimetic Erythrocyte-Like Particles from Microfluidic Electrospray for Tissue Engineering
7
作者 Zhiqiang Luo Lijun Cai +2 位作者 Hanxu Chen Guopu Chen Yuanjin Zhao 《Engineering》 SCIE EI CAS CSCD 2024年第9期78-86,共9页
Microparticles have demonstrated value for regenerative medicine.Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration.Here,inspired by erythrocy... Microparticles have demonstrated value for regenerative medicine.Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration.Here,inspired by erythrocytes-associated self-repairing process in damaged tissue,we present novel biomimetic erythrocyte-like microparticles(ELMPs).These ELMPs,which are composed of extracellular matrix-like hybrid hydrogels and the functional additives of black phosphorus,hemoglobin,and growth factors(GFs),are generated by using a microfluidic electrospray.As the resultant ELMPs have the capacity for oxygen delivery and near-infrared-responsive release of both GFs and oxygen,they would have excellent biocompatibility and multifunctional performance when serving as microscaffolds for cell adhesion,stimulating angiogenesis,and adjusting the release profile of cargoes.Based on these features,we demonstrate that the ELMPs can stably overlap to fill a wound and realize controllable cargo release to achieve the desired curative effect of tissue regeneration.Thus,we consider our biomimetic ELMPs with discoid morphology and cargo-delivery capacity to be ideal for tissue engineering. 展开更多
关键词 Biomimetics ERYTHROCYTE tissue engineering MICROFLUIDICS ELECTROSPRAY Oxygen delivery
在线阅读 下载PDF
In vitro investigations on the effects of graphene and graphene oxide on polycaprolactone bone tissue engineering scaffolds
8
作者 Yanhao Hou Weiguang Wang Paulo Bartolo 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期651-669,共19页
Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomateria... Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomaterials are often investigated to reinforce the PCL scaffolds.Despite several studies that have been conducted on carbon nanomaterials,such as graphene(G)and graphene oxide(GO),certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds.This paper addresses this limitation by investigating both the nonbiological(element composition,surface,degradation,and thermal and mechanical properties)and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications.Results showed that the incorporation of G and GO increased surface properties(reduced modulus and wettability),material crystallinity,crystallization temperature,and degradation rate.However,the variations in compressive modulus,strength,surface hardness,and cell metabolic activity strongly depended on the type of reinforcement.Finally,a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight,fiber diameter,porosity,and mechanical properties as functions of degradation time and carbon nanomaterial concentrations.The results presented in this paper enable the design of three-dimensional(3D)bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers. 展开更多
关键词 Additive manufacturing Bone tissue engineering Carbon nanomaterial GRAPHENE Graphene oxide SCAFFOLD
在线阅读 下载PDF
Fabrication of Dex-Loaded Shape Memory Polymer Based Composite Nanofibers for Potential Bone Tissue Engineering
9
作者 王先流 谢静 +2 位作者 杨亮亮 娄向新 张彦中 《Journal of Donghua University(English Edition)》 EI CAS 2014年第5期709-713,共5页
Biodegradable shape memory polymers( SMPs) are a class of intelligent materials with great potential for imparting biomaterial scaffolds multifunctionality in the field of tissue engineering and regenerative medicine.... Biodegradable shape memory polymers( SMPs) are a class of intelligent materials with great potential for imparting biomaterial scaffolds multifunctionality in the field of tissue engineering and regenerative medicine.In this study,the biodegradable SMP poly( D,L-lactide-co-trimethylene carbonate)( PLMC) incorporated with the dexamethasone( Dex),which was a kind of synthetic bone-formation inducing factor,was fabricated into nanofibers via electrospinning.The morphology,constituent,thermal and mechanical properties of the produced Dex / PLMC composite nanofibers were characterized by scanning electron microscopy( SEM), Fourier transform infrared spectroscopy( FTIR), differential scanning calorimetry( DSC),and tensile testing,respectively.Then,ultrasound was employed as a remote stimulus to regulate the Dex releasing behavior from the composite nanofibers.It was found that the generated Dex /PLMC composite nanofibers had a uniform and smooth morphology with a diameter of ca.564 nm.Mechanical testing results showed that incorporation of the Dex gave rise to improved mechanical performance with the tensile strength,Young's modulus and strainat-break increased by 18.2%,20.0% and 64.4%,respectively.DSC data revealed that the glass transition temperature( Tg) of the composite nanofibers, i.e., the thermal transition temperature( Ttrans) for activating shape memory effect, was 39.7 ℃.Moreover, the release kinetics of the encapsulated Dex in the nanofibers could be manipulated by varying the acoustic power and insonation duration.These results suggested that the newly developed Dex / PLMC nanofibers could be a promising drug delivery system for applications in bone tissue engineering( BTE). 展开更多
关键词 DEXAMETHASONE (Dex) shape memory polymer (SMP) ultrasound BONE tissue engineering( BTE) ELECTROSPINNING
在线阅读 下载PDF
WJSC 6^(th) Anniversary Special Issues(2):Mesenchymal stem cellsAdipose mesenchymal stem cells in the field of bone tissue engineering 被引量:5
10
作者 Cecilia Romagnoli Maria Luisa Brandi 《World Journal of Stem Cells》 SCIE CAS 2014年第2期144-152,共9页
Bone tissue engineering represents one of the most challenging emergent fields for scientists and clinicians.Current failures of autografts and allografts in many pathological conditions have prompted researchers to f... Bone tissue engineering represents one of the most challenging emergent fields for scientists and clinicians.Current failures of autografts and allografts in many pathological conditions have prompted researchers to find new biomaterials able to promote bone repair or regeneration with specific characteristics of biocompatibility,biodegradability and osteoinductivity.Recent advancements for tissue regeneration in bone defects have occurred by following the diamond concept and combining the use of growth factors and mesenchymal stem cells(MSCs).In particular,a more abundant and easily accessible source of MSCs was recently discovered in adipose tissue.These adipose stem cells(ASCs)can be obtained in large quantities with little donor site morbidity or patient discomfort,in contrast to the invasive and painful isolation of bone marrow MSCs.The osteogenic potential of ASCs on scaffolds has been examined in cell cultures and animal models,with only a few cases reporting the use of ASCs for successful reconstruction or accelerated healing of defects of the skull and jaw in patients.Although these reports extend our limited knowledge concerning the use of ASCs for osseous tissue repair and regeneration,the lack of standardization in applied techniques makes the comparison between studies difficult.Additional clinical trials are needed to assess ASC therapy and address potential ethical and safety concerns,which must be resolved to permit application in regenerative medicine. 展开更多
关键词 Adipose-derived stem cells Bone tissue engineering OSTEOGENIC DIFFERENTIATION SCAFFOLD REGENERATIVE medicine
在线阅读 下载PDF
Design and Simulation of Flow Field for Bone Tissue Engineering Sca old Based on Triply Periodic Minimal Surface 被引量:2
11
作者 Zhen Wang Chuanzhen Huang +3 位作者 Jun Wang Peng Wang Shisheng Bi Ch Asad Abbas 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第2期193-202,共10页
A novel method was proposed to design the structure of a bone tissue engineering scafold based on triply periodic minimal surface.In this method,reverse engineering software was used to reconstruct the surface from po... A novel method was proposed to design the structure of a bone tissue engineering scafold based on triply periodic minimal surface.In this method,reverse engineering software was used to reconstruct the surface from point cloud data.This method overcomes the limitations of commercially available software packages that prevent them from generating models with complex surfaces used for bone tissue engineering scafolds.Additionally,the fluid feld of the scafolds was simulated through a numerical method based on fnite volume and the cell proliferation performance was evaluated via an in vitro experiment.The cell proliferation and the mass flow evaluated in a bioreactor further verifed the flow feld simulated using computational fluid dynamics.The result of this study illustrates that the pressure value drops rapidly from 0.103 Pa to 0.011 Pa in the y-axis direction and the mass flow is unevenly distributed in the outlets.The mass flow in the side outlets is observed to be approximately 24.3 times higher thanthe bottom.Importantly,although the mean value of wall shear stress is signifcantly more than 0.05 Pa,there is stil a large area with a suitable shear stress below 0.05 Pa where most cells can proliferate well.The result shows that th inlet velocity 0.0075 m/s is suitable for cell proliferation in the scafold.This study provides an insight into the design analysis,and in vitro experiment of a bone tissue engineering scafold. 展开更多
关键词 BONE tissue engineering Porous SCA OLD Flow field REVERSE engineering Cell PROLIFERATION
在线阅读 下载PDF
Silk fibroins modify the atmospheric low temperature plasma-treated poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) film for the application of cardiovascular tissue engineering
12
作者 Huaxiao Yang Min Sun +2 位作者 Ping Zhou Luanfeng Pan Chungen Wu 《Journal of Biomedical Science and Engineering》 2010年第12期1146-1155,共10页
Tissue engineered scaffold is one of the hopeful therapies for the patients with organ or tissue damages. The key element for a tissue engineered scaffold material is high biocompatibility. Herein the poly (3-hydroxyb... Tissue engineered scaffold is one of the hopeful therapies for the patients with organ or tissue damages. The key element for a tissue engineered scaffold material is high biocompatibility. Herein the poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) film was irradiated by the low temperature atmospheric plasma and then coated by the silk fibroins (SF). After plasma treatment, the surface of PHBHHx film became rougher and more hydrophilic than that of original film. The experiment of PHBHHx flushed by phosphate buffer solution (PBS) proves that the coated SF shows stronger immobilization on the plasma-treated film than that on the untreated film. The cell viability assay demonstrates that SF-coated PHBHHx films treated by the plasma significantly supports the proliferation and growth of the human smooth muscle cells (HSMCs). Furthermore, the scanning electron microscopy and hemotoylin and eosin (HE) staining show that HSMCs formed a cell sub-monolayer and secreted a large amount of extracellular matrix (ECM) on the films after one week's culture. The silk fibroins modify the plasma-treated PHBHHx film, providing a material potentially applicable in the cardiovascular tissue engi-neering. 展开更多
关键词 BIOCOMPATIBLE Cardiovascular tissue engineering Low Temperature Plasma POLY (3-Hydroxybutyrate-Co-3-Hydroxyhexanoate) (PHBHHx) Silk Fibroin
在线阅读 下载PDF
Magnetic resonance imaging-three-dimensional printing technology fabricates customized scaffolds for brain tissue engineering 被引量:2
13
作者 Feng Fu Zhe Qin +10 位作者 Chao Xu Xu-yi Chen Rui-xin Li Li-na Wang Ding-wei Peng Hong-tao Sun Yue Tu Chong Chen Sai Zhang Ming-liang Zhao Xiao-hong Li 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第4期614-622,共9页
Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to crea... Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer- aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine. 展开更多
关键词 nerve regeneration three-dimensional printing traumatic brain injury tissue engineering scaffolds magnetic resonance imaging COLLAGEN CHITOSAN MIMICS neural regeneration
在线阅读 下载PDF
Preparation of polypyrrole-embedded electrospun poly(lactic acid) nanofibrous scaffolds for nerve tissue engineering 被引量:2
14
作者 Jun-feng Zhou Yi-guo Wang +3 位作者 Liang Cheng Zhao Wu Xiao-dan Sun Jiang Peng 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第10期1644-1652,共9页
Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We ... Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We embedded PPy into poly(lactic acid) (PLA) nanofibers via electrospinning and fabricated a PLA/PPy nanofibrous scaffold containing 15% PPy with sustained conductivity and aligned topog- raphy, qhere was good biocompatibility between the scaffold and human umbilical cord mesenchymal stem cells as well as Schwann cells. Additionally, the direction of cell elongation on the scaffold was parallel to the direction of fibers. Our findings suggest that the aligned PLA/PPy nanofibrous scaffold is a promising biomaterial for peripheral nerve regeneration. 展开更多
关键词 nerve regeneration POLYPYRROLE ELECTROSPINNING CONDUCTIVITY electrical property Schwann cells human umbilical cord mesenchymalstem cells nerve tissue engineering nanofibrous scaffolds neural regeneration
在线阅读 下载PDF
Biomimetic natural biomaterials for tissue engineering and regenerative medicine:new biosynthesis methods,recent advances,and emerging applications 被引量:5
15
作者 Shuai Liu Jiang-Ming Yu +11 位作者 Yan-Chang Gan Xiao-Zhong Qiu Zhe-Chen Gao Huan Wang Shi-Xuan Chen Yuan Xiong Guo-Hui Liu Si-En Lin Alec McCarthy Johnson V.John Dai-Xu Wei Hong-Hao Hou 《Military Medical Research》 SCIE CAS CSCD 2024年第1期50-79,共30页
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds bas... Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix(ECM).Additionally,such materials have mechanical adaptability,micro-structure interconnectivity,and inherent bioactivity,making them ideal for the design of living implants for specific applications in TE and regenerative medicine.This paper provides an overview for recent progress of biomimetic natural biomaterials(BNBMs),including advances in their preparation,functionality,potential applications and future challenges.We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM.Moreover,we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications.Finally,we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field. 展开更多
关键词 Biomimic SCAFFOLD BIOSYNTHESIS Natural biomaterial tissue engineering
在线阅读 下载PDF
Selected suitable seed cell, scaffold and growth factor could maximize the repair effect using tissue engineering method in spinal cord injury 被引量:22
16
作者 Wen-Chen Ji Xiao-Wei Zhang Yu-Sheng Qiu 《World Journal of Experimental Medicine》 2016年第3期58-62,共5页
Spinal cord injury usually leads to permanent disability, which could cause a huge financial problem to the patient. Up to now there is no effective method to treat this disease. The key of the treatment is to enable ... Spinal cord injury usually leads to permanent disability, which could cause a huge financial problem to the patient. Up to now there is no effective method to treat this disease. The key of the treatment is to enable the damage zone axonal regeneration and luckily it could go through the damage zone; last a connection can be established with the target neurons. This study attempts to combine stem cell, material science and genetic modification technology together, by preparing two genes modified adipose-derived stem cells and inducing them into neuron direction; then by compositing them on the silk fibroin/chitosan scaffold and implanting them into the spinal cord injury model, seed cells can have features of neuron cells. At the same time, it could stably express the brain-derived neurotrophic factor and neurotrophin-3, both of which could produce synergistic effects, which have a positive effect on the recovery of spinal cord. The spinal cord scaffold bridges the broken end of the spinal cord and isolates with the surrounding environment, which could avoid a scar effect on the nerve regeneration and provide three-dimensional space for the seed cell growth, and at last we hope to provide a new treatment for spinal cord injury with the tissue engineering technique. 展开更多
关键词 tissue engineering SEED CELL SCAFFOLD Growth factor Spinal CORD injury
在线阅读 下载PDF
Corneal stem cells and tissue engineering: Current advances and future perspectives 被引量:4
17
作者 Aline Lütz de Araujo JoséAlvaro Pereira Gomes 《World Journal of Stem Cells》 SCIE CAS 2015年第5期806-814,共9页
Major advances are currently being made in regenerative medicine for cornea. Stem cell-based therapies represent a novel strategy that may substitute conventional corneal transplantation, albeit there aremany challeng... Major advances are currently being made in regenerative medicine for cornea. Stem cell-based therapies represent a novel strategy that may substitute conventional corneal transplantation, albeit there aremany challenges ahead given the singularities of each cellular layer of the cornea. This review recapitulates the current data on corneal epithelial stem cells, corneal stromal stem cells and corneal endothelial cell progenitors. Corneal limbal autografts containing epithelial stem cells have been transplanted in humans for more than 20 years with great successful rates, and researchers now focus on ex vivo cultures and other cell lineages to transplant to the ocular surface. A small population of cells in the corneal endothelium was recently reported to have self-renewal capacity, although they do not proliferate in vivo. Two main obstacles have hindered endothelial cell transplantation to date: culture protocols and cell delivery methods to the posterior cornea in vivo. Human corneal stromal stem cells have been identified shortly after the recognition of precursors of endothelial cells. Stromal stem cells may have the potential to provide a direct cell-based therapeutic approach when injected to corneal scars. Furthermore, they exhibit the ability to deposit organized connective tissue in vitro and may be useful in corneal stroma engineering in the future. Recent advances and future perspectives in the field are discussed. 展开更多
关键词 CORNEA Stem cells Cell-based therapy Limbal TRANSPLANTATION tissue engineering Cornealendothelium
在线阅读 下载PDF
Tissue engineering for the repair of peripheral nerve injury 被引量:22
18
作者 Pei-Xun Zhang Na Han +5 位作者 Yu-Hui Kou Qing-Tang Zhu Xiao-Lin Liu Da-Ping Quan Jian-Guo Chen Bao-Guo Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第1期51-58,共8页
Peripheral nerve injury is a common clinical problem and affects the quality of life of patients. Traditional restoration methods are not satisfactory. Researchers increasingly focus on the field of tissue engineering... Peripheral nerve injury is a common clinical problem and affects the quality of life of patients. Traditional restoration methods are not satisfactory. Researchers increasingly focus on the field of tissue engineering. The three key points in establishing a tissue engineering material are the biological scaffold material, the seed cells and various growth factors. Understanding the type of nerve injury, the construction of scaffold and the process of repair are necessary to solve peripheral nerve injury and promote its regeneration. This review describes the categories of peripheral nerve injury, fundamental research of peripheral nervous tissue engineering and clinical research on peripheral nerve scaffold material, and paves a way for related research and the use of conduits in clinical practice. 展开更多
关键词 nerve regeneration SCAFFOLD biomaterial stem cells nerve growth factor peripheral nerve injury peripheral nerve repair tissue engineering neural regeneration
在线阅读 下载PDF
Magnesium-incorporated biocomposite scaffolds:A novel frontier in bone tissue engineering
19
作者 Abinaya Shanmugavadivu Sundaravadhanan Lekhavadhani +2 位作者 Sushma Babu Nivetha Suresh Nagarajan Selvamurugan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2231-2248,共18页
Nonunion represents a crucial challenge in orthopedic medicine,demanding innovative solutions beyond the scope of traditional bone grafting methods.Among the various strategies available,magnesium(Mg)implants have bee... Nonunion represents a crucial challenge in orthopedic medicine,demanding innovative solutions beyond the scope of traditional bone grafting methods.Among the various strategies available,magnesium(Mg)implants have been recognized for their biocompatibility and biodegradability.However,their susceptibility to rapid corrosion and degradation has garnered notable research interest in bone tissue engineering(BTE),particularly in the development of Mg-incorporated biocomposite scaffolds.These scaffolds gradually release Mg2+,which enhances immunomodulation,osteogenesis,and angiogenesis,thus facilitating effective bone regeneration.This review presents myriad fabrication techniques used to create Mg-incorporated biocomposite scaffolds,including electrospinning,three-dimensional printing,and sol-gel synthesis.Despite these advancements,the application of Mg-incorporated biocomposite scaffolds faces challenges such as controlling the degradation rate of Mg and ensuring mechanical stability.These limitations highlight the necessity for ongoing research aimed at refining fabrication techniques to better regulate the physicochemical and osteogenic properties of scaffolds.This review provides insights into the potential of Mg-incorporated biocomposite scaffolds for BTE and the challenges that need to be addressed for their successful translation into clinical applications. 展开更多
关键词 MAGNESIUM Bone tissue engineering IMMUNOMODULATION OSTEOGENESIS ANGIOGENESIS
在线阅读 下载PDF
The marriage of immunomodulatory,angiogenic,and osteogenic capabilities in a piezoelectric hydrogel tissue engineering scafold for military medicine
20
作者 Ping Wu Lin Shen +12 位作者 Hui-Fan Liu Xiang-Hui Zou Juan Zhao Yu Huang Yu-Fan Zhu Zhao-Yu Li Chao Xu Li-Hua Luo Zhi-Qiang Luo Min-Hao Wu Lin Cai Xiao-Kun Li Zhou-Guang Wang 《Military Medical Research》 SCIE CAS CSCD 2024年第3期323-344,共22页
Background:Most bone-related injuries to grassroots troops are caused by training or accidental injuries.To establish preventive measures to reduce all kinds of trauma and improve the combat effectiveness of grassroot... Background:Most bone-related injuries to grassroots troops are caused by training or accidental injuries.To establish preventive measures to reduce all kinds of trauma and improve the combat effectiveness of grassroots troops,it is imperative to develop new strategies and scafolds to promote bone regeneration.Methods:In this study,a porous piezoelectric hydrogel bone scafold was fabricated by incorporating polydopamine(PDA)-modified ceramic hydroxyapatite(PDA-hydroxyapatite,PHA)and PDA-modified barium titanate(PDABaTiO_(3),PBT)nanoparticles into a chitosan/gelatin(Cs/Gel)matrix.The physical and chemical properties of the Cs/Gel/PHA scafold with 0–10 wt%PBT were analyzed.Cell and animal experiments were performed to characterize the immunomodulatory,angiogenic,and osteogenic capabilities of the piezoelectric hydrogel scafold in vitro and in vivo.Results:The incorporation of BaTiO_(3) into the scafold improved its mechanical properties and increased self-generated electricity.Due to their endogenous piezoelectric stimulation and bioactive constituents,the prepared Cs/Gel/PHA/PBT hydrogels exhibited cytocompatibility as well as immunomodulatory,angiogenic,and osteogenic capabilities;they not only effectively induced macrophage polarization to M2 phenotype but also promoted the migration,tube formation,and angiogenic differentiation of human umbilical vein endothelial cells(HUVECs)and facilitated the migration,osteodifferentiation,and extracellular matrix(ECM)mineralization of MC3T3-E1 cells.The in vivo evaluations showed that these piezoelectric hydrogels with versatile capabilities significantly facilitated new bone formation in a rat large-sized cranial injury model.The underlying molecular mechanism can be partly attributed to the immunomodulation of the Cs/Gel/PHA/PBT hydrogels as shown via transcriptome sequencing analysis,and the PI3K/Akt signaling axis plays an important role in regulating macrophage M2 polarization.Conclusion:The piezoelectric Cs/Gel/PHA/PBT hydrogels developed here with favorable immunomodulation,angiogenesis,and osteogenesis functions may be used as a substitute in periosteum injuries,thereby offering the novel strategy of applying piezoelectric stimulation in bone tissue engineering for the enhancement of combat efectiveness in grassroots troops. 展开更多
关键词 Piezoelectric hydrogel tissue engineering scafold IMMUNOMODULATION Angiogenesis Osteogenic differentiation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部