AIM: To investigate the relationship between the inhibited growth (cytotoxic activity) of berberine and apoptotic pathway with its molecular mechanism of action. METHODS: The in vitro cytotoxic techniques were com...AIM: To investigate the relationship between the inhibited growth (cytotoxic activity) of berberine and apoptotic pathway with its molecular mechanism of action. METHODS: The in vitro cytotoxic techniques were complemented by cell cycle analysis and determination of sub-G1 for apoptosis in human gastric carcinoma SNU-5 cells. Percentage of viable cells, cell cycle, and sub431 group (apoptosis) were examined and determined by the flow cytometric methods. The associated proteins for cell cycle arrest and apoptosis were examined by Western blotting. RESULTS: For SNU-5 cell line, the IC (50) was found to be 48 μmol/L of berberine. In SNU-5 cells treated with 25-200 μmol/L berberine, G2/M cell cycle arrest was observed which was associated with a marked increment of the expression of p53, Wee1 and CDk1 proteins and decreased cyclin B. A concentration-dependent decrease of cells in G0/G1 phase and an increase in G2/M phase were detected. In addition, apoptosis detected as sub-Go cell population in cell cycle measurement was proved in 25-200 μmol/L berberine-treated cells by monitoring the apoptotic pathway. Apoptosis was identified by sub-Go cell population, and upregulation of Bax, downregulation of Bcl-2, release of Ca^2+, decreased the mitochondrial membrane potential and then led to the release of mitochondrial cytochrome C into the cytoplasm and caused the activation of caspase-3, and finally led to the occurrence of apoptosis. CONCLUSION: Berberine induces p53 expression and leads to the decrease of the mitochondrial membrane potential, Cytochrome C release and activation of caspase-3 for the induction of apoptosis.展开更多
AIM: To investigate the effects and molecular mechanisms of berberine on improving insulin resistance induced by free fatty acids (FFAs) in 3T3-L1 adipocytes. METHODS: The model of insulin resistance in 3T3-L1 adipocy...AIM: To investigate the effects and molecular mechanisms of berberine on improving insulin resistance induced by free fatty acids (FFAs) in 3T3-L1 adipocytes. METHODS: The model of insulin resistance in 3T3-L1 adipocytes was established by adding palmic acid (0.5 mmol/L) to the culture medium. Berberine treatment was performed at the same time. Glucose uptake rate was determined by the 2-deoxy-[3H]-D-glucose method. The levels of IkB kinase beta (IKKβ) Ser181 phosphorylation, insulin receptor substrate-1(IRS-1) Ser307 phosphorylation, expression of IKKβ, IRS-1, nuclear transcription factor kappaB p65 (NF-κB p65), phosphatidylinositol-3-kinase p85 (PI-3K p85) and glucose transporter 4 (GLUT4) proteins were detected by Western blotting. The distribution of NF-κB p65 proteins inside the adipocytes was observed through confocal laser scanning microscopy (CLSM). RESULTS: After the intervention of palmic acid for 24 h, the insulin-stimulated glucose transport in 3T3-L1 adipocytes was inhibited by 67%. Meanwhile, the expression of IRS-1 and PI-3K p85 protein was reduced, while the levels of IKKβ Ser181 and IRS-1 Ser307 phosphorylation, and nuclear translocation of NF-κB p65 protein were increased. However, the above indexes, which indicated the existence of insulin resistance, were reversed by berberine although the expression of GLUT4, IKKβ and total NF-κB p65 protein were not changed during this study. CONCLUSION: Insulin resistance induced by FFAs in 3T3-L1 adipocytes can be improved by berberine. Berberine reversed free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKβ.展开更多
AIM: To observe the effect of berberine on insulin secretion in rat pancreatic islets and to explore its possible molecular mechanism. METHODS: Pdmary rat islets were isolated from male Sprague-Dawley rats by collag...AIM: To observe the effect of berberine on insulin secretion in rat pancreatic islets and to explore its possible molecular mechanism. METHODS: Pdmary rat islets were isolated from male Sprague-Dawley rats by collagenase digestion and treated with different concentrations (1, 3, 10 and 30 μmol/L) of berberine or 1 μmol/L Glibenclamide (GB) for 24 h. Glucose-stimulated insulin secretion (GSIS) assay was conducted and insulin was determined by radioimmunoassay. 3-(4,5-Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate cytotoxicity. The mRNA level of hepatic nuclear factor 4 alpha (HAIF4α) was determined by reverse transcription polymerase chain reaction (RT-PCR). Indirect immunofluorescence staining and Western blot analysis were employed to detect protein expression of HNF4α in the islets. Glucokinase (GK) activity was measured by spectrophotometric method. RESULTS: Berberine enhanced GSIS rather than basal insulin secretion dose-dependently in rat islets and showed no significant cytotoxicity on islet cells at the concentration of 10 μmol/L. Both mRNA and protein expressions of HNF4α were up-regulated by berberine in a dose-dependent manner, and GK activity was also increased accordingly. However, GB demonstrated no regulatory effects on HNF4α expression or GK activity. CONCLUSION: Berberine can enhance GSIS in rat islets, and probably exerts the insulinotropic effect via a pathway involving HNF4α and GK, which is distinct from sulphonylureas (SUs).展开更多
Objective: To investigate the effect of berberine, one of the main alkaloids of Rhizoma coptidis, on myocardial morphology and the expressions of cyclin-dependent kinase 9 (Cdk9) and cyclin T1 protein in the myocar...Objective: To investigate the effect of berberine, one of the main alkaloids of Rhizoma coptidis, on myocardial morphology and the expressions of cyclin-dependent kinase 9 (Cdk9) and cyclin T1 protein in the myocardium of type 2 diabetic rats. Methods: Type 2 diabetes mellitus rats were induced by an injection of 35 mg/kg streptozotocin (STZ) and a high-carbohydrate/high-fat diet for 16 weeks. Diabetic rats were given low-, middle-, high-dose berberine (75, 150, 300 mg/kg), fenofibrate (100 mg/kg) and rosiglitazone (4 mg/kg) for another 16 weeks, respectively. The myocardium structure was observed with hematoxylin & eosin (H&E) staining and Cdk9 and cyclin T1 protein expressions were detected by immunohistochemistry. Results: Middle-dose, high-dose berberine improved myocardial hypertrophy and interstitial fibrosis of diabetic rats. Cdk9 and cyclin T1 protein were significantly lower in diabetic myocardium than in control one (P〈0.01), and middle-dose, high-dose berberine and fenofibrate obviously increased both Cdk9 and cyclin T1 expression to near control level (P〈0.01). Conclusion: Berberine modulates Cdk9 and cyclin T1 protein expression in diabetic myocardium which may contribute to ameliorate myocardium damage.展开更多
AIM:To investigate the effect of emodin on pancreatic claudin-5 and occludin expression,and pancreatic paracellular permeability in acute pancreatitis(AP).METHODS:Experimental pancreatitis was induced by retrograde in...AIM:To investigate the effect of emodin on pancreatic claudin-5 and occludin expression,and pancreatic paracellular permeability in acute pancreatitis(AP).METHODS:Experimental pancreatitis was induced by retrograde injection of 5% sodium taurocholate into the biliopancreatic duct.Emodin was injected via the external jugular vein 0 or 6 h after induction of AP.Rats from sham operation and AP groups were injected with normal saline at the same time.Samples of pancreas were obtained 6 or 12 h after drug administration.Pancreatic morphology was examined with hematoxylin and eosin staining.Pancreatic edema was estimated by measuring tissue water content.Tumor necrosis factor(TNF)-α and interleukin(IL)-6 level were measured by enzyme-linked immunosorbent assay.Pancreatic paracellular permeability was assessed by tissue dye extravasation.Expression of pancreatic claudin-5 and occludin was examined by immunohistology,quantitative real-time reverse transcriptase polymerase chain reaction and western blotting.RESULTS:Pancreatic TNF-α and IL-6 levels,wet/dry ratio,dye extravasation,and histological score were significantly elevated at 3,6 and 12 h following sodium taurocholate infusion;treatment with emodin prevented these changes at all time points.Immunostaining of claudin-5 and occludin was detected in rat pancreas,which was distributed in pancreatic acinar cells,ductal cells and vascular endothelial cells,respectively.Sodium taurocholate infusion significantly decreased pancreatic claudin-5 and occludin mRNA and protein levels at 3,6 and 12 h,and that could be promoted by intravenous administration of emodin at all time points.CONCLUSION:These results demonstrate that emodin could promote pancreatic claudin-5 and occludin expression,and reduce pancreatic paracellular permeability.展开更多
Berberine(BBR) is an organic small molecule isolated from various plants that have been used in traditional Chinese medicine. Isolation of this compound was its induction into modern medicine, and its usefulness becam...Berberine(BBR) is an organic small molecule isolated from various plants that have been used in traditional Chinese medicine. Isolation of this compound was its induction into modern medicine, and its usefulness became quickly apparent as seen in its ability to combat bacterial diarrhea, type 2 diabetes, hypercholesterolemia, inflammation, heart diseases, and more. However, BBR's effects on neurodegenerative diseases remained relatively unexplored until its ability to stunt Alzheimer's disease(AD) progression was characterized. In this review, we will delve into the multi-faceted defensive capabilities and bio-molecular pathways of BBR against AD, Parkinson's disease(PD), and trauma-induced neurodegeneration. The multiple effects of BBR, some of which enhance neuro-protective factors/pathways and others counteract targets that induce neurodegeneration, suggest that there are many more branches to the diverse capabilities of BBR that have yet to be uncovered. The promising results seen provide a convincing and substantial basis to support further scientific exploration and development of the therapeutic potential of BBR against neurodegenerative diseases.展开更多
基金Supported by The Grant CMU92-CM-02 from China Medical University
文摘AIM: To investigate the relationship between the inhibited growth (cytotoxic activity) of berberine and apoptotic pathway with its molecular mechanism of action. METHODS: The in vitro cytotoxic techniques were complemented by cell cycle analysis and determination of sub-G1 for apoptosis in human gastric carcinoma SNU-5 cells. Percentage of viable cells, cell cycle, and sub431 group (apoptosis) were examined and determined by the flow cytometric methods. The associated proteins for cell cycle arrest and apoptosis were examined by Western blotting. RESULTS: For SNU-5 cell line, the IC (50) was found to be 48 μmol/L of berberine. In SNU-5 cells treated with 25-200 μmol/L berberine, G2/M cell cycle arrest was observed which was associated with a marked increment of the expression of p53, Wee1 and CDk1 proteins and decreased cyclin B. A concentration-dependent decrease of cells in G0/G1 phase and an increase in G2/M phase were detected. In addition, apoptosis detected as sub-Go cell population in cell cycle measurement was proved in 25-200 μmol/L berberine-treated cells by monitoring the apoptotic pathway. Apoptosis was identified by sub-Go cell population, and upregulation of Bax, downregulation of Bcl-2, release of Ca^2+, decreased the mitochondrial membrane potential and then led to the release of mitochondrial cytochrome C into the cytoplasm and caused the activation of caspase-3, and finally led to the occurrence of apoptosis. CONCLUSION: Berberine induces p53 expression and leads to the decrease of the mitochondrial membrane potential, Cytochrome C release and activation of caspase-3 for the induction of apoptosis.
基金The National Natural Science Foundation of China, No. 30371816
文摘AIM: To investigate the effects and molecular mechanisms of berberine on improving insulin resistance induced by free fatty acids (FFAs) in 3T3-L1 adipocytes. METHODS: The model of insulin resistance in 3T3-L1 adipocytes was established by adding palmic acid (0.5 mmol/L) to the culture medium. Berberine treatment was performed at the same time. Glucose uptake rate was determined by the 2-deoxy-[3H]-D-glucose method. The levels of IkB kinase beta (IKKβ) Ser181 phosphorylation, insulin receptor substrate-1(IRS-1) Ser307 phosphorylation, expression of IKKβ, IRS-1, nuclear transcription factor kappaB p65 (NF-κB p65), phosphatidylinositol-3-kinase p85 (PI-3K p85) and glucose transporter 4 (GLUT4) proteins were detected by Western blotting. The distribution of NF-κB p65 proteins inside the adipocytes was observed through confocal laser scanning microscopy (CLSM). RESULTS: After the intervention of palmic acid for 24 h, the insulin-stimulated glucose transport in 3T3-L1 adipocytes was inhibited by 67%. Meanwhile, the expression of IRS-1 and PI-3K p85 protein was reduced, while the levels of IKKβ Ser181 and IRS-1 Ser307 phosphorylation, and nuclear translocation of NF-κB p65 protein were increased. However, the above indexes, which indicated the existence of insulin resistance, were reversed by berberine although the expression of GLUT4, IKKβ and total NF-κB p65 protein were not changed during this study. CONCLUSION: Insulin resistance induced by FFAs in 3T3-L1 adipocytes can be improved by berberine. Berberine reversed free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKβ.
基金The National Natural Science Foundation of China,No.30500685
文摘AIM: To observe the effect of berberine on insulin secretion in rat pancreatic islets and to explore its possible molecular mechanism. METHODS: Pdmary rat islets were isolated from male Sprague-Dawley rats by collagenase digestion and treated with different concentrations (1, 3, 10 and 30 μmol/L) of berberine or 1 μmol/L Glibenclamide (GB) for 24 h. Glucose-stimulated insulin secretion (GSIS) assay was conducted and insulin was determined by radioimmunoassay. 3-(4,5-Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate cytotoxicity. The mRNA level of hepatic nuclear factor 4 alpha (HAIF4α) was determined by reverse transcription polymerase chain reaction (RT-PCR). Indirect immunofluorescence staining and Western blot analysis were employed to detect protein expression of HNF4α in the islets. Glucokinase (GK) activity was measured by spectrophotometric method. RESULTS: Berberine enhanced GSIS rather than basal insulin secretion dose-dependently in rat islets and showed no significant cytotoxicity on islet cells at the concentration of 10 μmol/L. Both mRNA and protein expressions of HNF4α were up-regulated by berberine in a dose-dependent manner, and GK activity was also increased accordingly. However, GB demonstrated no regulatory effects on HNF4α expression or GK activity. CONCLUSION: Berberine can enhance GSIS in rat islets, and probably exerts the insulinotropic effect via a pathway involving HNF4α and GK, which is distinct from sulphonylureas (SUs).
文摘Objective: To investigate the effect of berberine, one of the main alkaloids of Rhizoma coptidis, on myocardial morphology and the expressions of cyclin-dependent kinase 9 (Cdk9) and cyclin T1 protein in the myocardium of type 2 diabetic rats. Methods: Type 2 diabetes mellitus rats were induced by an injection of 35 mg/kg streptozotocin (STZ) and a high-carbohydrate/high-fat diet for 16 weeks. Diabetic rats were given low-, middle-, high-dose berberine (75, 150, 300 mg/kg), fenofibrate (100 mg/kg) and rosiglitazone (4 mg/kg) for another 16 weeks, respectively. The myocardium structure was observed with hematoxylin & eosin (H&E) staining and Cdk9 and cyclin T1 protein expressions were detected by immunohistochemistry. Results: Middle-dose, high-dose berberine improved myocardial hypertrophy and interstitial fibrosis of diabetic rats. Cdk9 and cyclin T1 protein were significantly lower in diabetic myocardium than in control one (P〈0.01), and middle-dose, high-dose berberine and fenofibrate obviously increased both Cdk9 and cyclin T1 expression to near control level (P〈0.01). Conclusion: Berberine modulates Cdk9 and cyclin T1 protein expression in diabetic myocardium which may contribute to ameliorate myocardium damage.
基金Supported by National Natural Science Foundation of China,No.30500688
文摘AIM:To investigate the effect of emodin on pancreatic claudin-5 and occludin expression,and pancreatic paracellular permeability in acute pancreatitis(AP).METHODS:Experimental pancreatitis was induced by retrograde injection of 5% sodium taurocholate into the biliopancreatic duct.Emodin was injected via the external jugular vein 0 or 6 h after induction of AP.Rats from sham operation and AP groups were injected with normal saline at the same time.Samples of pancreas were obtained 6 or 12 h after drug administration.Pancreatic morphology was examined with hematoxylin and eosin staining.Pancreatic edema was estimated by measuring tissue water content.Tumor necrosis factor(TNF)-α and interleukin(IL)-6 level were measured by enzyme-linked immunosorbent assay.Pancreatic paracellular permeability was assessed by tissue dye extravasation.Expression of pancreatic claudin-5 and occludin was examined by immunohistology,quantitative real-time reverse transcriptase polymerase chain reaction and western blotting.RESULTS:Pancreatic TNF-α and IL-6 levels,wet/dry ratio,dye extravasation,and histological score were significantly elevated at 3,6 and 12 h following sodium taurocholate infusion;treatment with emodin prevented these changes at all time points.Immunostaining of claudin-5 and occludin was detected in rat pancreas,which was distributed in pancreatic acinar cells,ductal cells and vascular endothelial cells,respectively.Sodium taurocholate infusion significantly decreased pancreatic claudin-5 and occludin mRNA and protein levels at 3,6 and 12 h,and that could be promoted by intravenous administration of emodin at all time points.CONCLUSION:These results demonstrate that emodin could promote pancreatic claudin-5 and occludin expression,and reduce pancreatic paracellular permeability.
文摘Berberine(BBR) is an organic small molecule isolated from various plants that have been used in traditional Chinese medicine. Isolation of this compound was its induction into modern medicine, and its usefulness became quickly apparent as seen in its ability to combat bacterial diarrhea, type 2 diabetes, hypercholesterolemia, inflammation, heart diseases, and more. However, BBR's effects on neurodegenerative diseases remained relatively unexplored until its ability to stunt Alzheimer's disease(AD) progression was characterized. In this review, we will delve into the multi-faceted defensive capabilities and bio-molecular pathways of BBR against AD, Parkinson's disease(PD), and trauma-induced neurodegeneration. The multiple effects of BBR, some of which enhance neuro-protective factors/pathways and others counteract targets that induce neurodegeneration, suggest that there are many more branches to the diverse capabilities of BBR that have yet to be uncovered. The promising results seen provide a convincing and substantial basis to support further scientific exploration and development of the therapeutic potential of BBR against neurodegenerative diseases.