[Objective] The paper was to provide new germplasm sources for efficient and economical degradation and utilization of animal keratin.[Method] The keratin-degrading fungus was isolated,screened and primarily identifie...[Objective] The paper was to provide new germplasm sources for efficient and economical degradation and utilization of animal keratin.[Method] The keratin-degrading fungus was isolated,screened and primarily identified by using the combination method of traditional isolation and screening,solid culture-medium degradation and animal test.[Result] A strain of non-pathogenic filamentous fungi with high degradation efficiency was obtained,which was preliminarily identified to be a species in Mucoraceae.[Conclusion] The discovery of the strain enriched the family members of keratin-degrading fungus,and provided new germplasm resources for degradation and utilization of animal keratin.展开更多
A novel marine microbial esterase PHE14 was cloned from the genome of Pseudomonas oryzihabit‐ans HUP022 isolated from the deep sea of the western Pacific Ocean. Esterase PHE14 exhibited very good tolerance to most or...A novel marine microbial esterase PHE14 was cloned from the genome of Pseudomonas oryzihabit‐ans HUP022 isolated from the deep sea of the western Pacific Ocean. Esterase PHE14 exhibited very good tolerance to most organic solvents, surfactants and metal ions tested, thus making it a good esterase candidate for organic synthesis that requires an organic solvent, surfactants or metal ions. Esterase PHE14 was utilized as a biocatalyst in the asymmetric synthesis of D‐methyl lactate by enzymatic kinetic resolution. D‐methyl lactate is a key chiral chemical. Contrary to some previous reports, the addition of an organic solvent and surfactants in the enzymatic reaction did not have a beneficial effect on the kinetic resolution catalyzed by esterase PHE14. Our study is the first report on the preparation of the enantiomerically enriched product D‐methyl lactate by enzymatic kinetic resolution. The desired enantiomerically enriched product D‐methyl lactate was obtained with a high enantiomeric excess of 99%and yield of 88.7%after process optimization. The deep sea mi‐crobial esterase PHE14 is a green biocatalyst with very good potential in asymmetric synthesis in industry and can replace the traditional organic synthesis that causes pollution to the environment.展开更多
The major soil animal groups, enchytraeid worms and oribatid mites, were compared in the abundance and diversity between conventional fields (CT) and organic farming fields with tillage (OT) or no-tillage (ON) practic...The major soil animal groups, enchytraeid worms and oribatid mites, were compared in the abundance and diversity between conventional fields (CT) and organic farming fields with tillage (OT) or no-tillage (ON) practices. The values of abundance, species richness, diversity and evenness were significantly larger in OT and ON than in CT, indicating that the abundance and diversity in organic farming fields were greater than those in conventional farming. The community structure of enchytraeid genera was different between OT and ON. Enchytraeus was the most abundant in OT, while Fridericia in ON. The abundance of oribatids in OT was similar to that in ON, while the species richness and diversity in the former were smaller. These results suggested that no-tillage practice under organic management might contribute to the improvement in quality of soil mesofauna.展开更多
Bioremediation plays an increasingly important role in the remediation of chromium-contaminated soil because it is an environmentally friendly technology. To investigate the Cr(Ⅵ)reduction process by indigenous micro...Bioremediation plays an increasingly important role in the remediation of chromium-contaminated soil because it is an environmentally friendly technology. To investigate the Cr(Ⅵ)reduction process by indigenous microorganisms in soil, a batch of incubation experiments were carried out in a bioreactor under aerobic conditions. The results showed that in the presence of indigenous microorganisms, the Cr(Ⅵ) concentration in the chromium-contaminated soil decreased from 1521.9 to 199.2 mg/kg within 66 h with culture medium addition, while a slight decrease in the Cr(Ⅵ) concentration was found in the sterilized soil,implying that the indigenous microorganisms contributed to the Cr(Ⅵ) reduction. In the microbial remediation process, Cr(Ⅵ)microbial reduction occurred after the reduction of NO3-, Mn4+ and Fe3+ and,before SO42- reduction. The reduction process of Cr(Ⅵ) can be divided into two phases, characterized by the exponential equation model of microbial reduction and the linear equation model of the combined effect of the major ions. It can be concluded that indigenous Cr(Ⅵ)-reducing bacteria have a potential application for in-situ remediation of Cr(Ⅵ)-contaminated soil.展开更多
The bioleaching of two different types of low-grade copper tailings,acid-leaching tailings(ALT)and copper flotation tailings(CFT)by mixed moderate thermophiles,and the variation of mineralogical and microbiological ch...The bioleaching of two different types of low-grade copper tailings,acid-leaching tailings(ALT)and copper flotation tailings(CFT)by mixed moderate thermophiles,and the variation of mineralogical and microbiological characteristics during their dissolution processes were comparatively investigated.Results showed that bioleaching behaviors of the two types of tailings were significantly different.In ALT bioleaching,lower redox potential,higher[Fe3+]/[Fe2+]ratio and higher cell density in solution were obtained.These resulted in higher total copper,primary copper sulfide and secondary copper sulfide extractions,compared with CFT bioleaching.X-ray diffraction analysis suggested that gypsum and some metal organic complexes were detected in CFT bioleaching,which could cause the sluggish oxidation of sulphide minerals.The shifts of microbial community in the leachates and leaching residues varied greatly between ALT and CFT bioleaching.The percentage of iron-oxidizing bacteria in ALT bioleaching was higher than that of CFT,but the sulfur-oxidizing bacteria percentage was the opposite.The archaeon F.thermophilum L1 was detected in ALT but not in CFT.展开更多
A bstract Gut microbiota impacts the health of crustaceans. V ibrio alginolyticus is a main causative pathogen that induces the vibriosis in farmed swimming crabs, Portunus trituberculatus. However, it remains unknown...A bstract Gut microbiota impacts the health of crustaceans. V ibrio alginolyticus is a main causative pathogen that induces the vibriosis in farmed swimming crabs, Portunus trituberculatus. However, it remains unknown whether gut bacteria perform functions during the progression of vibriosis. In this study, 16 SrRNA gene amplicon sequencing was used to investigate temporal alteration of gut bacterial community in swimming crabs in response to 72-h V. alginolyticus challenge. Our results show that V. alginolyticus infection resulted in dynamic changes of bacterial community composition in swimming crabs. Such changes were highlighted by the overwhelming overabundance of V ibrio and a significant fluctuation in the gut bacteria including the bacteria with high relative abundance and especially those with low relative abundance. These findings reveal that crab vibriosis gradually develops with the infection time of V. alginolyticus and tightly relates to the dysbiosis of gut bacterial community structure. This work contributes to our appreciation of the importance of the balance of gut bacterial community structure in maintaining the health of crustaceans.展开更多
基金Supported by Technology Major Projects for Cultivation of New Varieties of National Genetically Modified Organism(2008ZX08005-002)~~
文摘[Objective] The paper was to provide new germplasm sources for efficient and economical degradation and utilization of animal keratin.[Method] The keratin-degrading fungus was isolated,screened and primarily identified by using the combination method of traditional isolation and screening,solid culture-medium degradation and animal test.[Result] A strain of non-pathogenic filamentous fungi with high degradation efficiency was obtained,which was preliminarily identified to be a species in Mucoraceae.[Conclusion] The discovery of the strain enriched the family members of keratin-degrading fungus,and provided new germplasm resources for degradation and utilization of animal keratin.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11030404)Key Project from the Chinese Academy of Sciences (KGZD-EW-606)+1 种基金the National Natural Science Foundation of China (21302199)Guangzhou Science and Technology Plan Projects (201510010012)~~
文摘A novel marine microbial esterase PHE14 was cloned from the genome of Pseudomonas oryzihabit‐ans HUP022 isolated from the deep sea of the western Pacific Ocean. Esterase PHE14 exhibited very good tolerance to most organic solvents, surfactants and metal ions tested, thus making it a good esterase candidate for organic synthesis that requires an organic solvent, surfactants or metal ions. Esterase PHE14 was utilized as a biocatalyst in the asymmetric synthesis of D‐methyl lactate by enzymatic kinetic resolution. D‐methyl lactate is a key chiral chemical. Contrary to some previous reports, the addition of an organic solvent and surfactants in the enzymatic reaction did not have a beneficial effect on the kinetic resolution catalyzed by esterase PHE14. Our study is the first report on the preparation of the enantiomerically enriched product D‐methyl lactate by enzymatic kinetic resolution. The desired enantiomerically enriched product D‐methyl lactate was obtained with a high enantiomeric excess of 99%and yield of 88.7%after process optimization. The deep sea mi‐crobial esterase PHE14 is a green biocatalyst with very good potential in asymmetric synthesis in industry and can replace the traditional organic synthesis that causes pollution to the environment.
文摘The major soil animal groups, enchytraeid worms and oribatid mites, were compared in the abundance and diversity between conventional fields (CT) and organic farming fields with tillage (OT) or no-tillage (ON) practices. The values of abundance, species richness, diversity and evenness were significantly larger in OT and ON than in CT, indicating that the abundance and diversity in organic farming fields were greater than those in conventional farming. The community structure of enchytraeid genera was different between OT and ON. Enchytraeus was the most abundant in OT, while Fridericia in ON. The abundance of oribatids in OT was similar to that in ON, while the species richness and diversity in the former were smaller. These results suggested that no-tillage practice under organic management might contribute to the improvement in quality of soil mesofauna.
基金Project(2018SK2044)supported by the Innovation Program of Science&Technology of Hunan Province,ChinaProject(51304250)supported by the National Natural Science Foundation of China
文摘Bioremediation plays an increasingly important role in the remediation of chromium-contaminated soil because it is an environmentally friendly technology. To investigate the Cr(Ⅵ)reduction process by indigenous microorganisms in soil, a batch of incubation experiments were carried out in a bioreactor under aerobic conditions. The results showed that in the presence of indigenous microorganisms, the Cr(Ⅵ) concentration in the chromium-contaminated soil decreased from 1521.9 to 199.2 mg/kg within 66 h with culture medium addition, while a slight decrease in the Cr(Ⅵ) concentration was found in the sterilized soil,implying that the indigenous microorganisms contributed to the Cr(Ⅵ) reduction. In the microbial remediation process, Cr(Ⅵ)microbial reduction occurred after the reduction of NO3-, Mn4+ and Fe3+ and,before SO42- reduction. The reduction process of Cr(Ⅵ) can be divided into two phases, characterized by the exponential equation model of microbial reduction and the linear equation model of the combined effect of the major ions. It can be concluded that indigenous Cr(Ⅵ)-reducing bacteria have a potential application for in-situ remediation of Cr(Ⅵ)-contaminated soil.
基金Projects(31570113,41573072)supported by the National Natural Science Foundation of China
文摘The bioleaching of two different types of low-grade copper tailings,acid-leaching tailings(ALT)and copper flotation tailings(CFT)by mixed moderate thermophiles,and the variation of mineralogical and microbiological characteristics during their dissolution processes were comparatively investigated.Results showed that bioleaching behaviors of the two types of tailings were significantly different.In ALT bioleaching,lower redox potential,higher[Fe3+]/[Fe2+]ratio and higher cell density in solution were obtained.These resulted in higher total copper,primary copper sulfide and secondary copper sulfide extractions,compared with CFT bioleaching.X-ray diffraction analysis suggested that gypsum and some metal organic complexes were detected in CFT bioleaching,which could cause the sluggish oxidation of sulphide minerals.The shifts of microbial community in the leachates and leaching residues varied greatly between ALT and CFT bioleaching.The percentage of iron-oxidizing bacteria in ALT bioleaching was higher than that of CFT,but the sulfur-oxidizing bacteria percentage was the opposite.The archaeon F.thermophilum L1 was detected in ALT but not in CFT.
基金Supported by the National Natural Science Foundation of China(No.41673076)the Major Agriculture Program of Ningbo(No.2017C110007)the K.C.Wong Magna Fund in Ningbo University
文摘A bstract Gut microbiota impacts the health of crustaceans. V ibrio alginolyticus is a main causative pathogen that induces the vibriosis in farmed swimming crabs, Portunus trituberculatus. However, it remains unknown whether gut bacteria perform functions during the progression of vibriosis. In this study, 16 SrRNA gene amplicon sequencing was used to investigate temporal alteration of gut bacterial community in swimming crabs in response to 72-h V. alginolyticus challenge. Our results show that V. alginolyticus infection resulted in dynamic changes of bacterial community composition in swimming crabs. Such changes were highlighted by the overwhelming overabundance of V ibrio and a significant fluctuation in the gut bacteria including the bacteria with high relative abundance and especially those with low relative abundance. These findings reveal that crab vibriosis gradually develops with the infection time of V. alginolyticus and tightly relates to the dysbiosis of gut bacterial community structure. This work contributes to our appreciation of the importance of the balance of gut bacterial community structure in maintaining the health of crustaceans.