本文将Dannan F M.和Elaydi S.[1,2]提出的常微分方程(ODE)的一致lipschitz稳定性概念拓广到滞后型泛函微分方程(RFDE),对一般线性RGDE,我们证明了一致lipschitz稳定与一致稳定是等价的;对一般非线性RFDE,利用liapunov泛函方法,建立了一...本文将Dannan F M.和Elaydi S.[1,2]提出的常微分方程(ODE)的一致lipschitz稳定性概念拓广到滞后型泛函微分方程(RFDE),对一般线性RGDE,我们证明了一致lipschitz稳定与一致稳定是等价的;对一般非线性RFDE,利用liapunov泛函方法,建立了一致lipschitz稳定性必要或充分条件。展开更多
研究了离散时间多智能体系统的间歇输出一致性问题。首先,基于离散时间多智能体系统建立模型,提出了对通信时间进行控制的间歇输出一致性控制协议;再通过构造误差系统和Lyapunov候选函数,分阶段得到实现输出一致性的充分条件;然后利用...研究了离散时间多智能体系统的间歇输出一致性问题。首先,基于离散时间多智能体系统建立模型,提出了对通信时间进行控制的间歇输出一致性控制协议;再通过构造误差系统和Lyapunov候选函数,分阶段得到实现输出一致性的充分条件;然后利用输出调节方程,证明了间歇通信下多智能体系统的输出一致性;最后,使用具体的数值进行仿真,验证所得结果的有效性。The intermittent output consensus problem of discrete-time multi-agent systems is studied. Firstly, a model based on discrete-time multi-agent systems is established, and an intermittent output consensus control protocol is proposed to control communication time. Then, by constructing an error system and Lyapunov candidate function, sufficient conditions for achieving output consensus are obtained in stages. After that, the output consensus of multi-agent systems under intermittent communication was proved by using the output adjustment equation. Finally, a specific numerical simulation was conducted to validate the validity of the results obtained.展开更多
文摘本文将Dannan F M.和Elaydi S.[1,2]提出的常微分方程(ODE)的一致lipschitz稳定性概念拓广到滞后型泛函微分方程(RFDE),对一般线性RGDE,我们证明了一致lipschitz稳定与一致稳定是等价的;对一般非线性RFDE,利用liapunov泛函方法,建立了一致lipschitz稳定性必要或充分条件。
文摘研究了离散时间多智能体系统的间歇输出一致性问题。首先,基于离散时间多智能体系统建立模型,提出了对通信时间进行控制的间歇输出一致性控制协议;再通过构造误差系统和Lyapunov候选函数,分阶段得到实现输出一致性的充分条件;然后利用输出调节方程,证明了间歇通信下多智能体系统的输出一致性;最后,使用具体的数值进行仿真,验证所得结果的有效性。The intermittent output consensus problem of discrete-time multi-agent systems is studied. Firstly, a model based on discrete-time multi-agent systems is established, and an intermittent output consensus control protocol is proposed to control communication time. Then, by constructing an error system and Lyapunov candidate function, sufficient conditions for achieving output consensus are obtained in stages. After that, the output consensus of multi-agent systems under intermittent communication was proved by using the output adjustment equation. Finally, a specific numerical simulation was conducted to validate the validity of the results obtained.