A three-dimensional transportation model for suspended solids (SS) in Zhujiang (Pearl) River estuary, South China, was developed by coupling with a three-dimensional hydrodynamic model. The model was validated using h...A three-dimensional transportation model for suspended solids (SS) in Zhujiang (Pearl) River estuary, South China, was developed by coupling with a three-dimensional hydrodynamic model. The model was validated using hourly measured data of sediment contents during 25–26, July 1999. The results showed that modeled contents matched well with measured ones and that the modeled top layer distribution agreed with the remotely sensed image of suspended solids in summer. The modeled results showed clearly the layers of sus- pended solids in depth, with larger sediment contents in lower layers though in the interface between salt water and freshwater the lowest contents appeared in middle layer. In overall, the suspended solids inflow from 8 rivers, transport southwestward, and carried by strong coastal flow in Zhujiang River estuary. Contours of sediment contents in the estuary spread further to the open sea during ebb tide rather than flood tide which reflects that the suspended solids in the estuary are land sourced.展开更多
The diesel particulate matter(DPM) emission from diesel powered equipment in underground mines can cause health hazards including cancer to the miners. The understanding of the DPM propagation pattern under realistic ...The diesel particulate matter(DPM) emission from diesel powered equipment in underground mines can cause health hazards including cancer to the miners. The understanding of the DPM propagation pattern under realistic mining condition is required for selecting proper DPM control strategies and to improve working practices in underground mines. In this paper, three dimensional simulations of DPM emission from the exhaust tail pipe of a load-haul-dump(LHD) vehicle and its subsequent distribution inside an isolated zone in the typical underground mine are carried out using two different solution models available in Ansys Fluent. The incoming fresh air into the isolated zone is treated as a continuous phase and DPM is treated either as a continuous phase(gas) or as a secondary discrete phase(particle). Species transport model is used when DPM is treated as gas and discrete phase model is used when DPM is assumed to behave like a particle. The distributions of DPM concentration inside the isolated zone obtained from each method are presented and compared. From the comparison results, an accurate and economical solution technique for DPM evaluation can be selected.展开更多
Three-dimensional(3D) printing(3DP) is a rapid prototyping technology that has gained increasing recognition in many different fields. Inherent accuracy and low-cost property enable applicability of 3DP in many areas,...Three-dimensional(3D) printing(3DP) is a rapid prototyping technology that has gained increasing recognition in many different fields. Inherent accuracy and low-cost property enable applicability of 3DP in many areas, such as manufacturing, aerospace,medical, and industrial design. Recently, 3DP has gained considerable attention in the medical field. The image data can be quickly turned into physical objects by using 3DP technology. These objects are being used across a variety of surgical specialties. The shortage of cadaver specimens is a major problem in medical education. However, this concern has been solved with the emergence of 3DP model. Custom-made items can be produced by using 3DP technology. This innovation allows 3DP use in preoperative planning and surgical training. Learning is difficult among medical students because of the complex anatomical structures of the liver. Thus, 3D visualization is a useful tool in anatomy teaching and hepatic surgical training. However,conventional models do not capture haptic qualities. 3DP can produce highly accurate and complex physical models. Many types of human or animal differentiated cells can be printed successfully with the development of 3D bio-printing technology. This progress represents a valuable breakthrough that exhibits many potential uses, such as research on drug metabolism or liver disease mechanism. This technology can also be used to solve shortage of organs for transplant in the future.展开更多
Objective. To investigate the biomechanical aspects of etiology,pathology, clinical manifestation, diagnosis and surgical treatment of the lumbar spinal stenosis. Methods’ A series of biomechanical methods, such as t...Objective. To investigate the biomechanical aspects of etiology,pathology, clinical manifestation, diagnosis and surgical treatment of the lumbar spinal stenosis. Methods’ A series of biomechanical methods, such as three-dimensional finite element models. three-dimensional kinematic measurement, cadeveric evaluation, and imaging assessment was applied to correlate lumbar biomechanics and lumbar spinal stenosis. Surgery of lumbar spinal stenosis has been improved. Results. The stresses significantly concentrate on the posterolateral part of the annulus fibrosus of disc, the posterior surface of vertebral body, the pedicle, the interarticularis and the facet joints. This trend is intensified by disc degeneration and lumbar backward extension. Posterior element resection has a definite effect upon the biomechanical behavior of lumbar vertebrae. The improved operations proved satis- factory. Conclusion. Stress concentration in the lumbar vertebrae is of importance to the etiology of degenerative lumbar spinal stenosis, and disc degeneration is the initial key of this process. Then these will be aggravated by backward extension. Functional radiography and myelography are of assistance to the diagnosis o f the lumbar spinal stenosis. For the surgical treatment of the lumbar spinal stenosis, destruction of the posterior element should be avoid as far as possible based upon the thorough decompression. Maintaining the lumbar spine in flexion by fusion after decompression has been proved a useful method. When developmental spinal stenosis is combined with disc herniation, discectomy through laminotomy is recommend for decompression.展开更多
The resistance loss of transportation was studied and the influences of buoyancy layout,mineral content and elastic modulus of flexible hose were investigated based on three-dimensional finite element model of fluid-s...The resistance loss of transportation was studied and the influences of buoyancy layout,mineral content and elastic modulus of flexible hose were investigated based on three-dimensional finite element model of fluid-solid interaction by MSC.MARC/MENTAT software.The numerical results show that the resistance losses increase with the increase of mineral content Cv and velocity of internal fluid v and decrease with the increase of elastic modulus E of flexible hose.The buoyancy layout and the velocity of internal fluid have greater impacts on the resistance losses than the elastic modulus of flexible hose.In order to reduce the resistance losses and improve the efficiency of the deep-ocean mining,Cv and v must be restricted in a suitable range (e.g.10%-25% and 2.5-4 m/s).Effective buoyancy layout (such as Scheme C and D) should be adopted and the suitable material of moderate E should be used for the flexible hose in deep-ocean mining.展开更多
A single-spin transition critical dynamics is used to investigate the three-dimensional kinetic Ising model on an anisotropic cubic lattice. We first derive the fundamental dynamical equations, and then linearize them...A single-spin transition critical dynamics is used to investigate the three-dimensional kinetic Ising model on an anisotropic cubic lattice. We first derive the fundamental dynamical equations, and then linearize them by a cutoff approximation. We obtain the approximate solutions of the local magnetization and equal-time pair correlation function in zero field. In which the axial-decoupling terms , and as higher infinitesimal quantity are ignored, where . We think that it is reasonable as the temperature of the system is very high. The result of what we obtain in this paper can go back to the one-dimensional Glauber's theory as long as .展开更多
Performances and efficiencies of displacement ventilation(DV) and partial ventilation(PV) for industrial halls of different configurations as well as the heat and mass transports within the industrial halls were numer...Performances and efficiencies of displacement ventilation(DV) and partial ventilation(PV) for industrial halls of different configurations as well as the heat and mass transports within the industrial halls were numerically investigated. Three levels of Rayleigh number(5.8×1010, 1.0×1012 and 2.1×1012) and two values of source contaminant flux(5 mg/s and 50 mg/s) were considered. The inlet Reynolds numbers were 2×104, 5×104, 1.5×105 and 4.5×105 for DV and 5×105, 1×106, 2×106 and 4×106 for PV, respectively. From the results, it is concluded that the above parameters have very complex impacts on the conjugated heat and mass transports. From points of view of acceptable indoor air quality and ventilation efficiency, PV at Re=1×106 with side-located sources and 65% of the supply air extracted through floor level outlets is the best choice when Ra=5.8×1010. However, DVs at Re=5×104 and Re=1.5×105with center-located sources and floor-mounted air suppliers are the best choices for Ra=1.0×1012 and Ra=2.1×1012, respectively. When source contaminant flux reaches 50 mg/s, local extraction as a supplement of general ventilation is recommended. The results can be a first approximation to 3D numerical investigation and preliminary ventilation system design guidelines for high-rise industrial halls.展开更多
We study a three-dimensional off-lattice protein folding model, which involves two species of residues interacting through Lennard-Jones potentials. By incorporating an extra energy contribution into the original pote...We study a three-dimensional off-lattice protein folding model, which involves two species of residues interacting through Lennard-Jones potentials. By incorporating an extra energy contribution into the original potential function, we replace the original constrained problem with an unconstrained minimization of a mixed potential function. As such an efficient quasi-physical algorithm for solving the protein folding problem is presented. We apply the proposed algorithm to sequences with up to 55 residues and compare the computational results with the putative lowest energy found by several of the most famous algorithms, showing the advantages of our method. The dynamic behavior of the quasi-physlcal algorithm is also discussed.展开更多
The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil i...The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment.展开更多
This paper contributes to depict the current pattern of applications of digital 3D models for professional research and practice, and for broader dissemination of cultural heritage. Passing from a general review to th...This paper contributes to depict the current pattern of applications of digital 3D models for professional research and practice, and for broader dissemination of cultural heritage. Passing from a general review to the illustration of the background project, named MUSINT, the authors underline the objectives. The present case study primarily aims to share information about valuable archaeological collections which have little visibility. To enhance the project's contents, which include a whole set of different artifacts, the authors have reproduced high resolution, faithful and measurable digital models on one side, and on the other, lower resolution and geometrically simplified models are yet completed and very close to reality. The former are meant to implement a scholars' archive for further scientific activity. The latter to provide content for virtual exhibitions on the Web or on stand-alone interfaces situated in the actual physical museum spaces. The data acquisition and post-processing methods which have been tested and chosen are here briefly described. Hence, the authors then give an account of the most recurrent problematic issues of the established work-flow and how they should be solved. Touched instances are the delicate placing of the artifacts, which must be digitized, in relation to the triangulation-based laser scanner's functionality, the refining operations in order to build a coherent single polygon mesh, the most effective ways to deal with unavoidable missing parts or defected textures in the generated model and so on.展开更多
Objective: To analyze the stress distribution of calcaneus with posterior articular facet compressed after fracture and talus during gait. Methods: A wedge under the posterior articular was transected from a normal fi...Objective: To analyze the stress distribution of calcaneus with posterior articular facet compressed after fracture and talus during gait. Methods: A wedge under the posterior articular was transected from a normal finite element model of calcaneus and talus to simulate malformation of compression of the posterior facet after fracture of calcaneus. The model was used to simulate for three subphases of the stance during the gait(heel strike, midstance, push off) and calculate the finite element. The results were compared with normal situation. Results: The stress distribution within the bone in situation of malformation was obtained and regions of elevated stresses for three subphases were located. The results were significantly different from that of normal situation. Conclusion: The simulation of calcaneus and talus in malformation has important clinic implication and can provide an insight into the factors contributing to many clinic pathogenic changes after fracture of calcaneus.展开更多
The aim of this paper is the introduction of a new approach to 3D modelling of elastic piecewise homogeneous media, in particular Earth crust and upper Mantle. The method is based on the principle of tomography with E...The aim of this paper is the introduction of a new approach to 3D modelling of elastic piecewise homogeneous media, in particular Earth crust and upper Mantle. The method is based on the principle of tomography with Earthquake as a source of the signal and receiver stations on the surface. The wave propagation in solid media is described by a system of three strongly coupled hyperbolic equations with piece - wise constant coefitients. The characteristic set and hi-characteristic curves of this system are computed in a homogeneous half-space with free boundary and the formulae of reflection and diffraction of the hi-characteristics on the internal boundaries of the media. Applications of the characteristic set and bi-eharacteristic curves for the inverse problem in geophysics and Earth modelling are given.展开更多
This paper presents examples of field data of extreme seiche waves measured at Coffs Harbour by MHL and describes the generation and measuring methodology to detect and reduce seiche agitation in the Coifs Harbour boa...This paper presents examples of field data of extreme seiche waves measured at Coffs Harbour by MHL and describes the generation and measuring methodology to detect and reduce seiche agitation in the Coifs Harbour boat ramp using a 3D physical model. The paper also discusses the techniques in investigating a short wave problem of stability in the same model where a long wave is simulated. Waves offshore of Coffs Harbour at 80 m depth have been recorded by MHL for a period of over 30 years. Long waves have been simultaneously measured in the harbour over a period of a decade. These data enabled the model to be verified on two dates (4/6/12, 5/9/14) when high long waves were recorded at the boat ramp harbour under storm and non-storm conditions. Long waves are generated in harbours due to group bounded long wave and surf beat or edge waves. The paper presents methodologies of generating long waves both numerically and by using physical models, and discusses the advantages and disadvantages of these generation techniques. Numerical modelling carried out using long period regular waves in a previous investigation predicted reductions up to 50% due to change of planform of the boat ramp harbour where an area next to the boat ramp was excavated and roughness elements introduced to dampen long periods. The 3D physical model simulated a 25% decrease in the long wave energy in the boat ramp when a suitable change in the planform was made. A 3D undistorted model of scale 1:58 was used in the investigation.展开更多
基金This research was funded by The National Science Fund for Distin-guished Young Scholars (Estuarine and Coastal Studies 40225014) and The National Hi-Tech Research Fund (818-09-01-04).
文摘A three-dimensional transportation model for suspended solids (SS) in Zhujiang (Pearl) River estuary, South China, was developed by coupling with a three-dimensional hydrodynamic model. The model was validated using hourly measured data of sediment contents during 25–26, July 1999. The results showed that modeled contents matched well with measured ones and that the modeled top layer distribution agreed with the remotely sensed image of suspended solids in summer. The modeled results showed clearly the layers of sus- pended solids in depth, with larger sediment contents in lower layers though in the interface between salt water and freshwater the lowest contents appeared in middle layer. In overall, the suspended solids inflow from 8 rivers, transport southwestward, and carried by strong coastal flow in Zhujiang River estuary. Contours of sediment contents in the estuary spread further to the open sea during ebb tide rather than flood tide which reflects that the suspended solids in the estuary are land sourced.
基金financial support provided by the Western US Mining Safety and Health Training&Translation Center by the National Institute for Occupational Safety and Health(NIOSH)
文摘The diesel particulate matter(DPM) emission from diesel powered equipment in underground mines can cause health hazards including cancer to the miners. The understanding of the DPM propagation pattern under realistic mining condition is required for selecting proper DPM control strategies and to improve working practices in underground mines. In this paper, three dimensional simulations of DPM emission from the exhaust tail pipe of a load-haul-dump(LHD) vehicle and its subsequent distribution inside an isolated zone in the typical underground mine are carried out using two different solution models available in Ansys Fluent. The incoming fresh air into the isolated zone is treated as a continuous phase and DPM is treated either as a continuous phase(gas) or as a secondary discrete phase(particle). Species transport model is used when DPM is treated as gas and discrete phase model is used when DPM is assumed to behave like a particle. The distributions of DPM concentration inside the isolated zone obtained from each method are presented and compared. From the comparison results, an accurate and economical solution technique for DPM evaluation can be selected.
基金supported by a grant from the National HighTech Research and Development Projects (Grant No. 2015AA020303)
文摘Three-dimensional(3D) printing(3DP) is a rapid prototyping technology that has gained increasing recognition in many different fields. Inherent accuracy and low-cost property enable applicability of 3DP in many areas, such as manufacturing, aerospace,medical, and industrial design. Recently, 3DP has gained considerable attention in the medical field. The image data can be quickly turned into physical objects by using 3DP technology. These objects are being used across a variety of surgical specialties. The shortage of cadaver specimens is a major problem in medical education. However, this concern has been solved with the emergence of 3DP model. Custom-made items can be produced by using 3DP technology. This innovation allows 3DP use in preoperative planning and surgical training. Learning is difficult among medical students because of the complex anatomical structures of the liver. Thus, 3D visualization is a useful tool in anatomy teaching and hepatic surgical training. However,conventional models do not capture haptic qualities. 3DP can produce highly accurate and complex physical models. Many types of human or animal differentiated cells can be printed successfully with the development of 3D bio-printing technology. This progress represents a valuable breakthrough that exhibits many potential uses, such as research on drug metabolism or liver disease mechanism. This technology can also be used to solve shortage of organs for transplant in the future.
基金This project was supported by the National Natural ScienceFoundation of China.
文摘Objective. To investigate the biomechanical aspects of etiology,pathology, clinical manifestation, diagnosis and surgical treatment of the lumbar spinal stenosis. Methods’ A series of biomechanical methods, such as three-dimensional finite element models. three-dimensional kinematic measurement, cadeveric evaluation, and imaging assessment was applied to correlate lumbar biomechanics and lumbar spinal stenosis. Surgery of lumbar spinal stenosis has been improved. Results. The stresses significantly concentrate on the posterolateral part of the annulus fibrosus of disc, the posterior surface of vertebral body, the pedicle, the interarticularis and the facet joints. This trend is intensified by disc degeneration and lumbar backward extension. Posterior element resection has a definite effect upon the biomechanical behavior of lumbar vertebrae. The improved operations proved satis- factory. Conclusion. Stress concentration in the lumbar vertebrae is of importance to the etiology of degenerative lumbar spinal stenosis, and disc degeneration is the initial key of this process. Then these will be aggravated by backward extension. Functional radiography and myelography are of assistance to the diagnosis o f the lumbar spinal stenosis. For the surgical treatment of the lumbar spinal stenosis, destruction of the posterior element should be avoid as far as possible based upon the thorough decompression. Maintaining the lumbar spine in flexion by fusion after decompression has been proved a useful method. When developmental spinal stenosis is combined with disc herniation, discectomy through laminotomy is recommend for decompression.
基金Project(2006AA09Z240)supported by the National High Technology Research and Development Program of China
文摘The resistance loss of transportation was studied and the influences of buoyancy layout,mineral content and elastic modulus of flexible hose were investigated based on three-dimensional finite element model of fluid-solid interaction by MSC.MARC/MENTAT software.The numerical results show that the resistance losses increase with the increase of mineral content Cv and velocity of internal fluid v and decrease with the increase of elastic modulus E of flexible hose.The buoyancy layout and the velocity of internal fluid have greater impacts on the resistance losses than the elastic modulus of flexible hose.In order to reduce the resistance losses and improve the efficiency of the deep-ocean mining,Cv and v must be restricted in a suitable range (e.g.10%-25% and 2.5-4 m/s).Effective buoyancy layout (such as Scheme C and D) should be adopted and the suitable material of moderate E should be used for the flexible hose in deep-ocean mining.
文摘A single-spin transition critical dynamics is used to investigate the three-dimensional kinetic Ising model on an anisotropic cubic lattice. We first derive the fundamental dynamical equations, and then linearize them by a cutoff approximation. We obtain the approximate solutions of the local magnetization and equal-time pair correlation function in zero field. In which the axial-decoupling terms , and as higher infinitesimal quantity are ignored, where . We think that it is reasonable as the temperature of the system is very high. The result of what we obtain in this paper can go back to the one-dimensional Glauber's theory as long as .
基金Project(2011BAJ03B07)supported by National Twelve Five-year Science and Technology Support Program of ChinaProject supported by the China Scholarship Council+1 种基金Project(51276057,51376198)supported by the National Natural Science Foundation of ChinaProject(CX2014B064)supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Performances and efficiencies of displacement ventilation(DV) and partial ventilation(PV) for industrial halls of different configurations as well as the heat and mass transports within the industrial halls were numerically investigated. Three levels of Rayleigh number(5.8×1010, 1.0×1012 and 2.1×1012) and two values of source contaminant flux(5 mg/s and 50 mg/s) were considered. The inlet Reynolds numbers were 2×104, 5×104, 1.5×105 and 4.5×105 for DV and 5×105, 1×106, 2×106 and 4×106 for PV, respectively. From the results, it is concluded that the above parameters have very complex impacts on the conjugated heat and mass transports. From points of view of acceptable indoor air quality and ventilation efficiency, PV at Re=1×106 with side-located sources and 65% of the supply air extracted through floor level outlets is the best choice when Ra=5.8×1010. However, DVs at Re=5×104 and Re=1.5×105with center-located sources and floor-mounted air suppliers are the best choices for Ra=1.0×1012 and Ra=2.1×1012, respectively. When source contaminant flux reaches 50 mg/s, local extraction as a supplement of general ventilation is recommended. The results can be a first approximation to 3D numerical investigation and preliminary ventilation system design guidelines for high-rise industrial halls.
基金The project partially supported by National Key Basic Research Project of China under Grant No. 2004GB318000 and National Natural Science Foundation of China under Grant No. 10471051
文摘We study a three-dimensional off-lattice protein folding model, which involves two species of residues interacting through Lennard-Jones potentials. By incorporating an extra energy contribution into the original potential function, we replace the original constrained problem with an unconstrained minimization of a mixed potential function. As such an efficient quasi-physical algorithm for solving the protein folding problem is presented. We apply the proposed algorithm to sequences with up to 55 residues and compare the computational results with the putative lowest energy found by several of the most famous algorithms, showing the advantages of our method. The dynamic behavior of the quasi-physlcal algorithm is also discussed.
基金supported by the National Natural Science Foundation of China(No.41174157)
文摘The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment.
文摘This paper contributes to depict the current pattern of applications of digital 3D models for professional research and practice, and for broader dissemination of cultural heritage. Passing from a general review to the illustration of the background project, named MUSINT, the authors underline the objectives. The present case study primarily aims to share information about valuable archaeological collections which have little visibility. To enhance the project's contents, which include a whole set of different artifacts, the authors have reproduced high resolution, faithful and measurable digital models on one side, and on the other, lower resolution and geometrically simplified models are yet completed and very close to reality. The former are meant to implement a scholars' archive for further scientific activity. The latter to provide content for virtual exhibitions on the Web or on stand-alone interfaces situated in the actual physical museum spaces. The data acquisition and post-processing methods which have been tested and chosen are here briefly described. Hence, the authors then give an account of the most recurrent problematic issues of the established work-flow and how they should be solved. Touched instances are the delicate placing of the artifacts, which must be digitized, in relation to the triangulation-based laser scanner's functionality, the refining operations in order to build a coherent single polygon mesh, the most effective ways to deal with unavoidable missing parts or defected textures in the generated model and so on.
文摘Objective: To analyze the stress distribution of calcaneus with posterior articular facet compressed after fracture and talus during gait. Methods: A wedge under the posterior articular was transected from a normal finite element model of calcaneus and talus to simulate malformation of compression of the posterior facet after fracture of calcaneus. The model was used to simulate for three subphases of the stance during the gait(heel strike, midstance, push off) and calculate the finite element. The results were compared with normal situation. Results: The stress distribution within the bone in situation of malformation was obtained and regions of elevated stresses for three subphases were located. The results were significantly different from that of normal situation. Conclusion: The simulation of calcaneus and talus in malformation has important clinic implication and can provide an insight into the factors contributing to many clinic pathogenic changes after fracture of calcaneus.
文摘The aim of this paper is the introduction of a new approach to 3D modelling of elastic piecewise homogeneous media, in particular Earth crust and upper Mantle. The method is based on the principle of tomography with Earthquake as a source of the signal and receiver stations on the surface. The wave propagation in solid media is described by a system of three strongly coupled hyperbolic equations with piece - wise constant coefitients. The characteristic set and hi-characteristic curves of this system are computed in a homogeneous half-space with free boundary and the formulae of reflection and diffraction of the hi-characteristics on the internal boundaries of the media. Applications of the characteristic set and bi-eharacteristic curves for the inverse problem in geophysics and Earth modelling are given.
文摘This paper presents examples of field data of extreme seiche waves measured at Coffs Harbour by MHL and describes the generation and measuring methodology to detect and reduce seiche agitation in the Coifs Harbour boat ramp using a 3D physical model. The paper also discusses the techniques in investigating a short wave problem of stability in the same model where a long wave is simulated. Waves offshore of Coffs Harbour at 80 m depth have been recorded by MHL for a period of over 30 years. Long waves have been simultaneously measured in the harbour over a period of a decade. These data enabled the model to be verified on two dates (4/6/12, 5/9/14) when high long waves were recorded at the boat ramp harbour under storm and non-storm conditions. Long waves are generated in harbours due to group bounded long wave and surf beat or edge waves. The paper presents methodologies of generating long waves both numerically and by using physical models, and discusses the advantages and disadvantages of these generation techniques. Numerical modelling carried out using long period regular waves in a previous investigation predicted reductions up to 50% due to change of planform of the boat ramp harbour where an area next to the boat ramp was excavated and roughness elements introduced to dampen long periods. The 3D physical model simulated a 25% decrease in the long wave energy in the boat ramp when a suitable change in the planform was made. A 3D undistorted model of scale 1:58 was used in the investigation.