期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
非负矩阵Perron根的递减上界序列研究
1
作者 严大勇 《科园月刊》 2011年第1期48-49,共2页
通过构造一长方形的递减序列使得非负矩阵所有的非零特征值,得到对于一个至多有r+1个非零特征值的非负矩阵Perron根的递减上界序列。
关键词 PERRON根 非负矩阵 递减上界序列
在线阅读 下载PDF
非负不可约矩阵Perron根的上界序列 被引量:3
2
作者 黄廷祝 申淑谦 章伟 《计算数学》 CSCD 北大核心 2005年第3期285-290,共6页
给出了非负不可约矩阵Perron根的新上界序列,并指出该序列是收敛到Perron根的,最后给出两个数值例子加以说明,并与文献[1,3,6]中的结论进行了比较.
关键词 非负不可约矩阵 PERRON根 上界序列 不可约矩阵 序列 上界 收敛
原文传递
On the reciprocal sum of a sum-free sequence 被引量:4
3
作者 CHEN YongGao 《Science China Mathematics》 SCIE 2013年第5期951-966,共16页
Let ,4 = {1 ≤ a1 〈 a2 〈 ...} be a sequence of integers. ,4 is called a sum-free sequence if no ai is the sum of two or more distinct earlier terms. Let A be the supremum of reciprocal sums of sum-free sequences. In... Let ,4 = {1 ≤ a1 〈 a2 〈 ...} be a sequence of integers. ,4 is called a sum-free sequence if no ai is the sum of two or more distinct earlier terms. Let A be the supremum of reciprocal sums of sum-free sequences. In 1962, ErdSs proved that A 〈 103. A sum-free sequence must satisfy an ≥ (k ~ 1)(n - ak) for all k, n ≥ 1. A sequence satisfying this inequality is called a x-sequence. In 1977, Levine and O'Sullivan proved that a x-sequence A with a large reciprocal sum must have al = 1, a2 = 2, and a3 = 4. This can be used to prove that λ 〈 4. In this paper, it is proved that a x-sequence A with a large reciprocal sum must have its initial 16 terms: 1, 2, 4, 6, 9, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, and 50. This together with some new techniques can be used to prove that λ 〈 3.0752. Three conjectures are posed. 展开更多
关键词 sum-free sequences A-sequences g-sequences Erdos reciprocal sum constants
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部