Multi-objective robust state-feedback controller synthesis problems for linear discrete-time uncertain systems are addressed. Based on parameter-dependent Lyapunov functions, the Gl2 and GH2 norm expressed in terms of...Multi-objective robust state-feedback controller synthesis problems for linear discrete-time uncertain systems are addressed. Based on parameter-dependent Lyapunov functions, the Gl2 and GH2 norm expressed in terms of LMI (Linear Matrix Inequality) characterizations are further generalized to cope with the robust analysis for convex polytopic uncertain system. Robust state-feedback controller synthesis conditions are also derived for this class of uncertain systems. Using the above results, multi-objective state-feedback controller synthesis procedures which involve the LMI optimization technique are developed and less conservative than the existing one. An illustrative example verified the validity of the approach.展开更多
In this study, a linear model predictive control(MPC) approach with optimal filters is proposed for handling unmeasured disturbances with arbitrary statistics. Two types of optimal filters are introduced into the fram...In this study, a linear model predictive control(MPC) approach with optimal filters is proposed for handling unmeasured disturbances with arbitrary statistics. Two types of optimal filters are introduced into the framework of MPC to relax the assumption of integrated white noise model in existing approaches. The introduced filters are globally optimal for linear systems with unmeasured disturbances that have unknown statistics. This enables the proposed MPC to better handle disturbances without access to disturbance statistics. As a result, the effort required for disturbance modeling can be alleviated. The proposed MPC can achieve offset-free control in the presence of asymptotically constant unmeasured disturbances. Simulation results demonstrate that the proposed approach can provide an improved disturbance ?rejection performance over conventional approaches when applied to the control of systems with unmeasured disturbances that have arbitrary statistics.展开更多
In present paper, the disturbance attenuation problem of uncertain nonlinear cascaded systems is studied. Based on the adding one power integrator technique and recursive design, a feedback controller that solves the ...In present paper, the disturbance attenuation problem of uncertain nonlinear cascaded systems is studied. Based on the adding one power integrator technique and recursive design, a feedback controller that solves the disturbance attenuation problem is constructed for uncertain nonlinear cascaded systems with internal stability.展开更多
基金Project (No. 60374028) supported by the National Natural ScienceFoundation of China
文摘Multi-objective robust state-feedback controller synthesis problems for linear discrete-time uncertain systems are addressed. Based on parameter-dependent Lyapunov functions, the Gl2 and GH2 norm expressed in terms of LMI (Linear Matrix Inequality) characterizations are further generalized to cope with the robust analysis for convex polytopic uncertain system. Robust state-feedback controller synthesis conditions are also derived for this class of uncertain systems. Using the above results, multi-objective state-feedback controller synthesis procedures which involve the LMI optimization technique are developed and less conservative than the existing one. An illustrative example verified the validity of the approach.
基金Supported by the Startup Foundation of Hangzhou Dianzi University(ZX150204302002/009)the Open Project Program of the State Key Laboratory of Industrial Control Technology(Zhejiang University)National Natural Science Foundation of China(No.61374142,61273145,and 61273146)
文摘In this study, a linear model predictive control(MPC) approach with optimal filters is proposed for handling unmeasured disturbances with arbitrary statistics. Two types of optimal filters are introduced into the framework of MPC to relax the assumption of integrated white noise model in existing approaches. The introduced filters are globally optimal for linear systems with unmeasured disturbances that have unknown statistics. This enables the proposed MPC to better handle disturbances without access to disturbance statistics. As a result, the effort required for disturbance modeling can be alleviated. The proposed MPC can achieve offset-free control in the presence of asymptotically constant unmeasured disturbances. Simulation results demonstrate that the proposed approach can provide an improved disturbance ?rejection performance over conventional approaches when applied to the control of systems with unmeasured disturbances that have arbitrary statistics.
文摘In present paper, the disturbance attenuation problem of uncertain nonlinear cascaded systems is studied. Based on the adding one power integrator technique and recursive design, a feedback controller that solves the disturbance attenuation problem is constructed for uncertain nonlinear cascaded systems with internal stability.