回顾了中国气象局高分辨率陆面数据同化系统(High Resolution China Meteorological Administration Land Data Assimilation System,HRCLDAS)的研发历程,重点介绍了HRCLDAS研发过程中的重要进展和突破,概要阐述了这些进展对HRCLDAS业...回顾了中国气象局高分辨率陆面数据同化系统(High Resolution China Meteorological Administration Land Data Assimilation System,HRCLDAS)的研发历程,重点介绍了HRCLDAS研发过程中的重要进展和突破,概要阐述了这些进展对HRCLDAS业务化的贡献。主要包括:引入1 km分辨率地形数据,采用多重网格变分分析技术制作1 km分辨率气象驱动数据;基于FY-2卫星1 km可见光通道、高分辨率地形及地表反照率等数据,改善地面入射太阳辐射产品质量与空间分辨率,利用辐射计算模型(Hybrid)模型与地面站日照时数、气温等观测资料模拟地面太阳辐射,并利用多重网格变分分析技术实现二者融合;实现东亚多卫星集成降水产品(EMSIP)与4万余自动站观测降水融合,并实时生成格点融合产品,针对陆面模拟分辨率高、数据量大的特点,设计了分块并行与模式并行结合的计算方案,建立了高效的土壤湿度模拟产品业务系统,有效地推动各级气象部门开展相关业务应用工作。展开更多
为研究不同陆面模式对中国区域土壤温度的模拟效果,基于中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)大气驱动数据分别驱动Noah和Noah-MP陆面模式进行中国区域土壤温度的模拟(简称:CLDAS_Noah和CLDAS_Noah-MP...为研究不同陆面模式对中国区域土壤温度的模拟效果,基于中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)大气驱动数据分别驱动Noah和Noah-MP陆面模式进行中国区域土壤温度的模拟(简称:CLDAS_Noah和CLDAS_Noah-MP试验),使用2010—2018年中国气象局2380个土壤温度观测站点10和40 cm观测数据以及美国全球陆面数据同化系统(The Global Land Data Assimilation System,GLDAS)驱动的Noah模式(GLDAS_Noah试验)模拟的土壤温度结果,从空间分布、季节、分区等角度进行了评估,实现了不同驱动数据相同陆面模式和相同驱动数据不同陆面模式的对比分析。结果表明:GLDAS_Noah、CLDAS_Noah和CLDAS_Noah-MP试验均能合理模拟出中国区域土壤温度空间分布,但在量级上有一定差异,主要表现在中国东北、新疆、青藏高原等积雪区。对于相同陆面模式不同驱动数据,均方根误差显示CLDAS_Noah试验在季节与分区上均优于GLDAS_Noah试验,间接表明CLDAS大气驱动数据优于GLDAS大气驱动数据,且大气驱动数据是提高土壤温度模拟精度的重要因素之一;对于相同驱动数据不同陆面模式,总体上CLDAS_Noah-MP试验棋拟效果优于CLDAS_Noah试验,其中CLDAS_Noah试验模拟的10和40 cm深度土壤温度在冬季积雪区误差明显大于CLDAS_Noah-MP试验,可能与Noah-MP模式改进了积雪方案有关,但10和40 cm深度下CLDAS_Noah-MP试验在东北、华北、青藏高原地区对春季土壤温度模拟误差明显大于CLDAS_Noah试验,可能与Noah-MP模式融雪方案有关。总之,本研究对于后续开展土壤温度多模式集成、土壤温度站点资料同化,最终研制中国区域高质量土壤温度数据集具有一定的参考意义。展开更多
陆面数据同化系统的输入和输出数据以其格式多样性、海量性为主要特征。以GIS二次开发组件ArcGIS Engine,ArcSDE空间数据库引擎和SQL Server 2005数据库管理工具,利用C#、IDL编程语言,构建土壤湿度同化数据空间数据库,并将气象数据具有...陆面数据同化系统的输入和输出数据以其格式多样性、海量性为主要特征。以GIS二次开发组件ArcGIS Engine,ArcSDE空间数据库引擎和SQL Server 2005数据库管理工具,利用C#、IDL编程语言,构建土壤湿度同化数据空间数据库,并将气象数据具有时间域、空间域和属性域等多维属性与GIS数据模型相结合,研制开发综合分析处理系统,实现土壤湿度同化输入参数与输出数据的空间分析与管理。系统能够满足陆面同化系统对数据的处理与分析需求,为土壤湿度同化产品的业务应用提供强大的支撑。展开更多
基于高时空分辨率的中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)2.0版本的大气驱动数据,使用Noah-MP陆面模式模拟中国区域2013—2014年土壤湿度的时空变化,将模拟结果与自动土壤水分观测站的逐小时观测值进...基于高时空分辨率的中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)2.0版本的大气驱动数据,使用Noah-MP陆面模式模拟中国区域2013—2014年土壤湿度的时空变化,将模拟结果与自动土壤水分观测站的逐小时观测值进行对比,并选取6个研究区,分析区域的平均土壤湿度时间变化特点。结果表明:Noah-MP模式能够很好地模拟出中国区域0~10 cm土壤湿度空间分布,模拟值和观测值均呈现由西北向东南和西南地区递增的趋势;从全国尺度来看,模拟值与观测值非常接近,相关系数大于0.9,均方根误差为0.008 m3/m3;从区域尺度看,Noah-MP能够很好地模拟出各研究区土壤湿度的时间变化,但是对于冻土融化时东北地区的土壤湿度存在轻微的低估。基于CLDAS2.0驱动数据得到的土壤湿度模拟结果具有较高准确性,可为农业干旱研究提供一定参考。展开更多
文摘回顾了中国气象局高分辨率陆面数据同化系统(High Resolution China Meteorological Administration Land Data Assimilation System,HRCLDAS)的研发历程,重点介绍了HRCLDAS研发过程中的重要进展和突破,概要阐述了这些进展对HRCLDAS业务化的贡献。主要包括:引入1 km分辨率地形数据,采用多重网格变分分析技术制作1 km分辨率气象驱动数据;基于FY-2卫星1 km可见光通道、高分辨率地形及地表反照率等数据,改善地面入射太阳辐射产品质量与空间分辨率,利用辐射计算模型(Hybrid)模型与地面站日照时数、气温等观测资料模拟地面太阳辐射,并利用多重网格变分分析技术实现二者融合;实现东亚多卫星集成降水产品(EMSIP)与4万余自动站观测降水融合,并实时生成格点融合产品,针对陆面模拟分辨率高、数据量大的特点,设计了分块并行与模式并行结合的计算方案,建立了高效的土壤湿度模拟产品业务系统,有效地推动各级气象部门开展相关业务应用工作。
文摘为研究不同陆面模式对中国区域土壤温度的模拟效果,基于中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)大气驱动数据分别驱动Noah和Noah-MP陆面模式进行中国区域土壤温度的模拟(简称:CLDAS_Noah和CLDAS_Noah-MP试验),使用2010—2018年中国气象局2380个土壤温度观测站点10和40 cm观测数据以及美国全球陆面数据同化系统(The Global Land Data Assimilation System,GLDAS)驱动的Noah模式(GLDAS_Noah试验)模拟的土壤温度结果,从空间分布、季节、分区等角度进行了评估,实现了不同驱动数据相同陆面模式和相同驱动数据不同陆面模式的对比分析。结果表明:GLDAS_Noah、CLDAS_Noah和CLDAS_Noah-MP试验均能合理模拟出中国区域土壤温度空间分布,但在量级上有一定差异,主要表现在中国东北、新疆、青藏高原等积雪区。对于相同陆面模式不同驱动数据,均方根误差显示CLDAS_Noah试验在季节与分区上均优于GLDAS_Noah试验,间接表明CLDAS大气驱动数据优于GLDAS大气驱动数据,且大气驱动数据是提高土壤温度模拟精度的重要因素之一;对于相同驱动数据不同陆面模式,总体上CLDAS_Noah-MP试验棋拟效果优于CLDAS_Noah试验,其中CLDAS_Noah试验模拟的10和40 cm深度土壤温度在冬季积雪区误差明显大于CLDAS_Noah-MP试验,可能与Noah-MP模式改进了积雪方案有关,但10和40 cm深度下CLDAS_Noah-MP试验在东北、华北、青藏高原地区对春季土壤温度模拟误差明显大于CLDAS_Noah试验,可能与Noah-MP模式融雪方案有关。总之,本研究对于后续开展土壤温度多模式集成、土壤温度站点资料同化,最终研制中国区域高质量土壤温度数据集具有一定的参考意义。
文摘陆面数据同化系统的输入和输出数据以其格式多样性、海量性为主要特征。以GIS二次开发组件ArcGIS Engine,ArcSDE空间数据库引擎和SQL Server 2005数据库管理工具,利用C#、IDL编程语言,构建土壤湿度同化数据空间数据库,并将气象数据具有时间域、空间域和属性域等多维属性与GIS数据模型相结合,研制开发综合分析处理系统,实现土壤湿度同化输入参数与输出数据的空间分析与管理。系统能够满足陆面同化系统对数据的处理与分析需求,为土壤湿度同化产品的业务应用提供强大的支撑。
文摘基于高时空分辨率的中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)2.0版本的大气驱动数据,使用Noah-MP陆面模式模拟中国区域2013—2014年土壤湿度的时空变化,将模拟结果与自动土壤水分观测站的逐小时观测值进行对比,并选取6个研究区,分析区域的平均土壤湿度时间变化特点。结果表明:Noah-MP模式能够很好地模拟出中国区域0~10 cm土壤湿度空间分布,模拟值和观测值均呈现由西北向东南和西南地区递增的趋势;从全国尺度来看,模拟值与观测值非常接近,相关系数大于0.9,均方根误差为0.008 m3/m3;从区域尺度看,Noah-MP能够很好地模拟出各研究区土壤湿度的时间变化,但是对于冻土融化时东北地区的土壤湿度存在轻微的低估。基于CLDAS2.0驱动数据得到的土壤湿度模拟结果具有较高准确性,可为农业干旱研究提供一定参考。