主要讨论时标上二阶中立型动力方程(x(t)-sum pi(t)x(t-τ))from i=1 to n△△+=sum fi(t,x(t-δi))from i=1 to n=0的振动性,其中pi∈Crd(T,R+),τ,δi∈(0,∞),使得对所有t∈T,有t-τ,t-δi∈T,fi∈C(T×R,R),i=1,2,…,n。利用导...主要讨论时标上二阶中立型动力方程(x(t)-sum pi(t)x(t-τ))from i=1 to n△△+=sum fi(t,x(t-δi))from i=1 to n=0的振动性,其中pi∈Crd(T,R+),τ,δi∈(0,∞),使得对所有t∈T,有t-τ,t-δi∈T,fi∈C(T×R,R),i=1,2,…,n。利用导数的符号来判断解的性质,通过不等式的放缩,得到结论,并得到所有解振动的充分条件。展开更多
We investigate oscillation of certain second order neutral dynamic equations of Emden-Fowler type with positive and negative coefficients. We use some different techniques and apply Riccati transformation to establish...We investigate oscillation of certain second order neutral dynamic equations of Emden-Fowler type with positive and negative coefficients. We use some different techniques and apply Riccati transformation to establish new oscillatory criteria which include two necessary and sufficient conditions. Moreover, we point out that how the power γ plays its role. Some interesting examples are given to illustrate the versatility of our results.展开更多
文摘主要讨论时标上二阶中立型动力方程(x(t)-sum pi(t)x(t-τ))from i=1 to n△△+=sum fi(t,x(t-δi))from i=1 to n=0的振动性,其中pi∈Crd(T,R+),τ,δi∈(0,∞),使得对所有t∈T,有t-τ,t-δi∈T,fi∈C(T×R,R),i=1,2,…,n。利用导数的符号来判断解的性质,通过不等式的放缩,得到结论,并得到所有解振动的充分条件。
基金The National Natural Science Foundation of China(11426066,11426068,11301090)the Natural Science Foundation of Guangdong University of Education(2014jcjs03,2015ybzz01)
基金supported by National Natural Science Foundation of China (Grant No. 11271379)Guangzhou Postdoctoral Science Research Foundation Project (Grant No. gdbsh2014003)
文摘We investigate oscillation of certain second order neutral dynamic equations of Emden-Fowler type with positive and negative coefficients. We use some different techniques and apply Riccati transformation to establish new oscillatory criteria which include two necessary and sufficient conditions. Moreover, we point out that how the power γ plays its role. Some interesting examples are given to illustrate the versatility of our results.