期刊文献+
共找到102篇文章
< 1 2 6 >
每页显示 20 50 100
结合图神经网络和图对比学习的半监督多图分类
1
作者 路秋霖 王慧颖 +2 位作者 朱峰冉 李全鑫 庞俊 《计算机工程与应用》 北大核心 2025年第1期368-374,共7页
多图(multi-graph,MG)是一种图袋表示模型,半监督多图分类旨在从有标记和未标记的多图中构建一个预测模型,通过高准确度预测未标记多图,在用户产品推荐、生物制药等领域有着广泛应用。现有基于机器学习的半监督多图分类主要存在两点不足... 多图(multi-graph,MG)是一种图袋表示模型,半监督多图分类旨在从有标记和未标记的多图中构建一个预测模型,通过高准确度预测未标记多图,在用户产品推荐、生物制药等领域有着广泛应用。现有基于机器学习的半监督多图分类主要存在两点不足:(1)不能进行全自动的特征选择,过于依赖参数选择。(2)对未标记多图数据的价值未充分挖掘。因此,提出一种结合图神经网络和图对比学习的半监督多图分类方法(graph neural network combining with graph contrastive learning for semi-supervised multi-graph classification,GCSS)。一方面,分别设计从局部和全局提取特征信息的模块,并引入NN协同器(neural networks collaborator,NN collaborator)完成这两个模块的协作,自适应学习数据的特征表示进行训练;另一方面,采用图对比学习(graph contrastive learning,GCL)和半监督学习(semi-supervised learning,SSL)从两个不同学习视角来充分利用未标记多图数据,降低模型对标签等的依赖。在真实数据集上的大量实验结果验证了所提出方法的预测性能均优于基线方法。 展开更多
关键词 监督分类 对比学习 神经网络 注意力机制
在线阅读 下载PDF
基于主动学习的图半监督分类算法 被引量:1
2
作者 高成 陈秀新 +1 位作者 于重重 刘宇 《计算机工程与设计》 北大核心 2015年第7期1871-1875,共5页
为抑制噪声数据对分类结果的影响,将噪声处理算法与高斯随机域算法相结合,提出一种带噪声系数的高斯随机域学习算法;针对样本集不平衡性数据分类问题,考虑主动学习在样本不平衡问题中的应用,将主动学习与图半监督算法相结合,提出一种鲁... 为抑制噪声数据对分类结果的影响,将噪声处理算法与高斯随机域算法相结合,提出一种带噪声系数的高斯随机域学习算法;针对样本集不平衡性数据分类问题,考虑主动学习在样本不平衡问题中的应用,将主动学习与图半监督算法相结合,提出一种鲁棒性强的主动学习图半监督分类算法。利用基于样本划分的主动学习方法,对正类的近邻样本集中样本与特定类样本形成的新样本集做总体散度排序,筛选出能使新样本集中总体散度最小的样本,代替正类的近邻样本集中所有样本,形成平衡类。在UCI标准数据集上的实验结果表明,与标准的图半监督算法相比,该算法的分类精度更高、泛化能力更强。 展开更多
关键词 带噪声系数的高斯随机域学习算法 样本不平衡问题 主动学习 监督算法 主动学习图半监督分类算法
在线阅读 下载PDF
基于联邦学习的主动半监督短文本分类方法
3
作者 孔德焱 冀振燕 +2 位作者 杨燕燕 刘洋 刘吉强 《电子学报》 EI CAS CSCD 北大核心 2024年第10期3517-3526,共10页
短文本分类应用广泛,是当前的研究热点,但受到短文本标注数据稀缺和数据隐私保护不便集中训练的影响,分类效果不佳.针对上述问题,我们提出了基于联邦学习的主动半监督异质图注意力网络模型(Active Semi-Supervised Learning empowered H... 短文本分类应用广泛,是当前的研究热点,但受到短文本标注数据稀缺和数据隐私保护不便集中训练的影响,分类效果不佳.针对上述问题,我们提出了基于联邦学习的主动半监督异质图注意力网络模型(Active Semi-Supervised Learning empowered Heterogeneous Graph ATtention network model based on Federated learning,Fed-ASSL-HGAT),通过设计新颖的主动半监督学习(Active Semi-Supervised Learning,ASSL)框架生成高质量标注样本赋能异质图注意力网络(Heterogeneous Graph ATttention network model,HGAT),引入联邦学习对部署在不同节点的模型进行联合训练以满足数据隐私保护需求.所提出的ASSL框架通过将主动学习的多类别标注转化成二元类别标注,可大大降低标注难度;设计基于信息增益的选择策略筛选软、硬标签,以防止信息损失;通过半监督学习选择高准确率、高稳定性的正负样本打伪标签以确保标注质量.实验结果表明,所提出的ASSL-HGAT(S)在AGNews、Snippets、TagMyNews数据集上相比HGAT基线模型F1值分别提升2.45%、8.11%、7.46%.融合联邦学习所进一步提出的Fed-ASSL-HGAT模型可在不泄漏隐私数据的情况下满足性能要求. 展开更多
关键词 异质神经网络 主动学习 监督学习 联邦学习
在线阅读 下载PDF
主动学习与图的半监督相结合的高光谱影像分类 被引量:17
4
作者 田彦平 陶超 +2 位作者 邹峥嵘 杨钊霞 何小飞 《测绘学报》 EI CSCD 北大核心 2015年第8期919-926,共8页
针对当前高光谱影像分类时,人工标注样本费时费力以及大量未标记样本未有效利用等问题,提出了一种主动学习与图的半监督相结合的高光谱影像分类方法。首先,将像素的光谱信息与其邻域内的空间信息相结合,利用重排序机制得到一种旋转不变... 针对当前高光谱影像分类时,人工标注样本费时费力以及大量未标记样本未有效利用等问题,提出了一种主动学习与图的半监督相结合的高光谱影像分类方法。首先,将像素的光谱信息与其邻域内的空间信息相结合,利用重排序机制得到一种旋转不变的空谱特征表达。在此基础上,利用主动学习算法选择最不确定性样本(即分类模糊度最大的样本),提交操作者标注得到标记样本集。最后将该标记样本与未标记样本组合,用于图的半监督分类。该算法可保证类别边界样本的选择,利于分类器的边界构造,同时,在较少标记样本情况下,通过引入大量的未标记样本,可以达到较好的分类效果。在3幅真实高光谱影像上的试验表明,该方法可以取得精度较高的分类结果。 展开更多
关键词 高光谱影像分类 监督学习 主动学习 空-谱特征
在线阅读 下载PDF
基于主动学习和半监督学习的多类图像分类 被引量:76
5
作者 陈荣 曹永锋 孙洪 《自动化学报》 EI CSCD 北大核心 2011年第8期954-962,共9页
多数图像分类算法需要大量的训练样本对分类器模型进行训练.在实际应用中,对大量样本进行标注非常枯燥、耗时.对于一些特殊图像,如合成孔径雷达(Synthetic aperture radar,SAR)图像,对其内容判读非常困难,因此能够获得的标注样本数量非... 多数图像分类算法需要大量的训练样本对分类器模型进行训练.在实际应用中,对大量样本进行标注非常枯燥、耗时.对于一些特殊图像,如合成孔径雷达(Synthetic aperture radar,SAR)图像,对其内容判读非常困难,因此能够获得的标注样本数量非常有限.本文将基于最优标号和次优标号(Best vs second-best,BvSB)的主动学习和带约束条件的自学习(Constrained self-training,CST)引入到基于支持向量机(Support vector machine,SVM)分类器的图像分类算法中,提出了一种新的图像分类方法.通过BvSB主动学习去挖掘那些对当前分类器模型最有价值的样本进行人工标注,并借助CST半监督学习进一步利用样本集中大量的未标注样本,使得在花费较小标注代价情况下,能够获得良好的分类性能.将新方法与随机样本选择、基于熵的不确定性采样主动学习算法以及BvSB主动学习方法进行了性能比较.对3个光学图像集及1个SAR图像集分类问题的实验结果显示,新方法能够有效地减少分类器训练时所需的人工标注样本的数量,并获得较高的准确率和较好的鲁棒性. 展开更多
关键词 主动学习 监督学习 支持向量机 分类
在线阅读 下载PDF
协同主动学习和半监督方法的海冰图像分类 被引量:3
6
作者 韩彦岭 赵耀 +4 位作者 周汝雁 张云 王静 杨树瑚 洪中华 《海洋学报》 CAS CSCD 北大核心 2020年第1期123-135,共13页
海冰遥感光谱影像分类中标签样本难以获取,导致海冰分类精度难以提高,但是大量包含丰富信息的未标签样本却没有得到充分利用,针对这种情况,提出一种协同主动学习和半监督学习方法用于海冰遥感图像分类。在主动学习部分,结合最优标号和... 海冰遥感光谱影像分类中标签样本难以获取,导致海冰分类精度难以提高,但是大量包含丰富信息的未标签样本却没有得到充分利用,针对这种情况,提出一种协同主动学习和半监督学习方法用于海冰遥感图像分类。在主动学习部分,结合最优标号和次优标号、自组织映射神经网络以及增强的聚类多样性算法来选择兼具不确定性和差异性的样本参与训练;在半监督学习部分,利用直推式支持向量机,并且融合主动学习思想从大量未标签样本中选取相对可靠且包含一定信息量的样本进行迭代训练;然后协同主动学习分类结果和半监督分类结果,通过一致性验证保证所加入伪标签样本的正确性。为了验证方法的有效性,分别采用巴芬湾地区30 m分辨率的Hyperion高光谱数据(验证数据为15 m分辨率的Landsat-8数据)和辽东湾地区15 m分辨率的Landsat-8数据(验证数据为4.77 m分辨率的Google Earth数据)进行海冰分类实验。实验结果表明,相对其他传统方法,该协同分类方法可以在只有少量标签样本的情况下,充分利用大量未标签样本中包含的信息,实现快速收敛,并获得较高的分类精度(两个实验的总体精度分别为90.003%和93.288%),适用于海冰遥感图像分类。 展开更多
关键词 海冰分类 主动学习 监督学习 直推式支持向量机 协同训练
在线阅读 下载PDF
结合主动学习策略的半监督分类算法 被引量:7
7
作者 赵建华 刘宁 《计算机应用研究》 CSCD 北大核心 2015年第8期2295-2298,共4页
为了提高半监督分类的性能,提出一种基于主动学习策略的半监督分类算法SSC_AL和一种基于改进的主动学习策略的半监督分类算法SSC_IAL。通过样本密度计算,改进基于投票熵的主动学习算法,减少主动学习过程中可能产生的孤立点和冗余点;分... 为了提高半监督分类的性能,提出一种基于主动学习策略的半监督分类算法SSC_AL和一种基于改进的主动学习策略的半监督分类算法SSC_IAL。通过样本密度计算,改进基于投票熵的主动学习算法,减少主动学习过程中可能产生的孤立点和冗余点;分别使用主动学习策略和改进的主动学习策略挑选信息价值高的无标记样本作为候选样本,使用半监督学习算法对候选样本进行自动标记,减少人工干预。最后,把新增加的新标记样本添加到主动学习和半监督学习的训练集中,训练各自分类器,反复迭代。使用UCI数据集进行实验,结果表明SSC-AL和SSC-IAL算法将问题规模缩减到原来的11%和17%,SSC-IAL分类率提高了1.41%,并且算法的收敛性良好。 展开更多
关键词 监督分类 主动学习 投票熵 样本密度
在线阅读 下载PDF
一种基于EM和分类损失的半监督主动DBN学习算法 被引量:2
8
作者 赵悦 穆志纯 +1 位作者 李霞丽 潘秀琴 《小型微型计算机系统》 CSCD 北大核心 2007年第4期656-660,共5页
对于建立动态贝叶斯网络(DBN)分类模型时,带有类标注样本数据集获得困难的问题,提出一种基于EM和分类损失的半监督主动DBN学习算法.半监督学习中的EM算法可以有效利用未标注样本数据来学习DBN分类模型,但是由于迭代过程中易于加入错误... 对于建立动态贝叶斯网络(DBN)分类模型时,带有类标注样本数据集获得困难的问题,提出一种基于EM和分类损失的半监督主动DBN学习算法.半监督学习中的EM算法可以有效利用未标注样本数据来学习DBN分类模型,但是由于迭代过程中易于加入错误的样本分类信息而影响模型的准确性.基于分类损失的主动学习借鉴到EM学习中,可以自主选择有用的未标注样本来请求用户标注,当把这些样本加入训练集后能够最大程度减少模型对未标注样本分类的不确定性.实验表明,该算法能够显著提高DBN学习器的效率和性能,并快速收敛于预定的分类精度. 展开更多
关键词 动态贝叶斯网络 监督学习 主动学习 EM算法
在线阅读 下载PDF
主动学习与半监督技术相结合的海冰图像分类 被引量:2
9
作者 韩彦岭 李鹏 +2 位作者 张云 徐利军 王静 《遥感信息》 CSCD 北大核心 2019年第2期15-22,共8页
针对海冰遥感图像分类问题中标签样本获取困难、标注成本较高导致海冰分类精度难以提高的问题,提出了一种主动学习与半监督学习相结合的方式用于海冰分类。首先,利用基于不确定性准则和多样性准则进行主动学习方法,选择一批最具信息量... 针对海冰遥感图像分类问题中标签样本获取困难、标注成本较高导致海冰分类精度难以提高的问题,提出了一种主动学习与半监督学习相结合的方式用于海冰分类。首先,利用基于不确定性准则和多样性准则进行主动学习方法,选择一批最具信息量的标签样本建立标签样本集;其次,充分利用大量的未标签样本信息,并融合主动学习采样的思想选出部分具有代表性且分布在支持向量周边的半标签样本,建立半监督分类模型;最后,将主动学习方法和直推式支持向量机相结合构建分类模型实现海冰图像分类。实验结果表明,相对于其他方法,该方法在只有少量标签样本的情况下,可以获得更高的分类精度,该方式可有效解决遥感海冰分类问题。 展开更多
关键词 海冰 主动学习 监督学习 直推式支持向量机 分类
在线阅读 下载PDF
融合主动学习的高光谱图像半监督分类 被引量:3
10
作者 王立国 李阳 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2017年第8期1322-1327,共6页
针对高光谱数据维数高、有标签样本少等特点,采用半监督分类利用未标记样本信息提高高光谱图像分类精度。主动学习研究训练样本的选择方法,以少量的标记样本得到尽可能好的泛化能力。本文提出了一种结合主动学习算法的半监督分类算法。... 针对高光谱数据维数高、有标签样本少等特点,采用半监督分类利用未标记样本信息提高高光谱图像分类精度。主动学习研究训练样本的选择方法,以少量的标记样本得到尽可能好的泛化能力。本文提出了一种结合主动学习算法的半监督分类算法。该方法使用支持向量机作为基本的学习模型,通过主动学习方法选取训练样本,以伪标记的形式加入到分类器的训练中,结合验证分类器迭代选出置信度较高的伪标记样本,通过差分进化算法交叉变异伪标记样本扩充标记样本群。在两个数据集上进行仿真实验,与传统分类算法相比,所提算法的总体分类精度分别提高了1.97%、0.49%,表明该算法能够有效地提升主动学习样本选择的效率,在有限带标记样本情况下提高了分类器精度。 展开更多
关键词 高光谱 监督分类 支持向量机 主动学习 差分进化
在线阅读 下载PDF
融合主动学习的改进贝叶斯半监督分类算法研究 被引量:4
11
作者 刘建峰 吕佳 《计算机测量与控制》 北大核心 2014年第6期1938-1940,共3页
半监督学习是人工智能领域一个重要的研究内容;在半监督学习中,如何有效利用未标记样本来提高分类器的泛化性能,是机器学习研究的热点和难点;主动学习可解决未标记样本有效利用的问题,将主动学习引入到半监督分类中,并改进贝叶斯算法,... 半监督学习是人工智能领域一个重要的研究内容;在半监督学习中,如何有效利用未标记样本来提高分类器的泛化性能,是机器学习研究的热点和难点;主动学习可解决未标记样本有效利用的问题,将主动学习引入到半监督分类中,并改进贝叶斯算法,提出了一种基于改进贝叶斯算法的主动学习与半监督学习结合算法;实验结果表明,该方法取得了较好的分类效果。 展开更多
关键词 监督分类 主动学习策略 概率模型 贝叶斯分类 KL距离
在线阅读 下载PDF
基于特征提取和半监督学习的图像分类算法 被引量:3
12
作者 吴涛 《粘接》 CAS 2021年第11期92-97,共6页
图像的光谱特征、高频纹理特征和中低频纹理特征,影响算法的特征提取结果,现有的图像分类算法由于特征提取与训练方法工作不到位,导致分类准确率难以达到预期目标,针对该问题研究基于特征提取和半监督学习的图像分类算法。算法设置过滤... 图像的光谱特征、高频纹理特征和中低频纹理特征,影响算法的特征提取结果,现有的图像分类算法由于特征提取与训练方法工作不到位,导致分类准确率难以达到预期目标,针对该问题研究基于特征提取和半监督学习的图像分类算法。算法设置过滤式、封装式以及嵌入式特征筛选规则,预处理原始图像特征信息;增强图像敏感区域,提取图像光谱特征,利用灰度共生矩阵和复值函数Gabor滤波,提取图像高频纹理和中低频纹理特征;数据训练采用半监督学习方法,通过不断更新分类器完成对图像的分类工作。结果表明,与5组其他分类算法相比,文中算法提取到了4处不明显的图像特征;在500、750和1 000次分类器更新的条件下,当近邻个数为7时,文中分类算法的准确率出现峰值,分别为92.51%、90.65%和90.22%,比5组算法的平均分类准确率,高出了1.98%、3.08%和4.14%,新的分类算法的分类效果超过预期。 展开更多
关键词 特征提取 监督学习 分类算法 近邻个数 准确率
在线阅读 下载PDF
结合Tri-training半监督学习和凸壳向量的SVM主动学习算法 被引量:6
13
作者 徐海龙 龙光正 +2 位作者 别晓峰 吴天爱 郭蓬松 《模式识别与人工智能》 EI CSCD 北大核心 2016年第1期39-46,共8页
为解决监督学习过程中难以获得大量带有类标记样本且样本数据标记代价较高的问题,结合主动学习和半监督学习方法,提出基于Tri-training半监督学习和凸壳向量的SVM主动学习算法.通过计算样本集的壳向量,选择最有可能成为支持向量的壳向... 为解决监督学习过程中难以获得大量带有类标记样本且样本数据标记代价较高的问题,结合主动学习和半监督学习方法,提出基于Tri-training半监督学习和凸壳向量的SVM主动学习算法.通过计算样本集的壳向量,选择最有可能成为支持向量的壳向量进行标记.为解决以往主动学习算法在选择最富有信息量的样本标记后,不再进一步利用未标记样本的问题,将Tri-training半监督学习方法引入SVM主动学习过程,选择类标记置信度高的未标记样本加入训练样本集,利用未标记样本集中有利于学习器的信息.在UCI数据集上的实验表明,文中算法在标记样本较少时获得分类准确率较高和泛化性能较好的SVM分类器,降低SVM训练学习的样本标记代价. 展开更多
关键词 主动学习 监督学习 支持向量机(SVM) 凸壳向量 Tri—training算法
在线阅读 下载PDF
基于半监督核模糊c-均值算法的北京一号小卫星多光谱图像分类 被引量:9
14
作者 刘小芳 何彬彬 李小文 《测绘学报》 EI CSCD 北大核心 2011年第3期301-306,325,共7页
针对遥感图像数据大多不服从高斯分布以及遥感图像分类存在非线性、模糊性和标记数据少等问题,提出基于半监督核模糊c-均值算法的多光谱遥感图像分类方法。首先,把半监督学习理论和核理论同时引入模糊c-均值算法,形成半监督核模糊c-均... 针对遥感图像数据大多不服从高斯分布以及遥感图像分类存在非线性、模糊性和标记数据少等问题,提出基于半监督核模糊c-均值算法的多光谱遥感图像分类方法。首先,把半监督学习理论和核理论同时引入模糊c-均值算法,形成半监督核模糊c-均值算法。然后,用该算法与k-均值算法、最大似然算法、多类支持向量、半监督核支持向量、模糊c-均值算法、核模糊c-均值算法和半监督模糊c-均值算法对IRIS数据和北京一号小卫星多光谱图像进行分类试验。最后,对其分类结果进行评价。结果表明,对比其他分类算法,半监督核模糊c-均值算法能显著提高分类精度。 展开更多
关键词 遥感分类 监督核模糊c-均值算法 北京一号小卫星 核理论 监督学习
在线阅读 下载PDF
基于半监督主动学习的菊花表型分类研究 被引量:4
15
作者 袁培森 任守纲 +1 位作者 翟肇裕 徐焕良 《农业机械学报》 EI CAS CSCD 北大核心 2018年第9期27-34,共8页
鉴于人工和专家分类模式的局限性,基于表型的菊花分类存在效率低下的问题。本文采用基于半监督主动学习技术,在已分类菊花数据的基础上,利用未标号菊花样本数据提供的信息,建立了菊花表型分类模型,提升了分类质量和效率。该模型可以不... 鉴于人工和专家分类模式的局限性,基于表型的菊花分类存在效率低下的问题。本文采用基于半监督主动学习技术,在已分类菊花数据的基础上,利用未标号菊花样本数据提供的信息,建立了菊花表型分类模型,提升了分类质量和效率。该模型可以不依赖外界交互,利用未标号样本来自动提升菊花分类的质量。为了训练学习模型,本文收集了菊花的表型特征数据,标注了菊花表型类别,并研究了菊花分类属性特征的编码技术。在此数据集上,采用基于图标号传播的半监督学习技术对未标号的菊花数据进行建模,为了提升半监督分类的有效性,在标号传播的基础上使用主动学习技术,采用熵最大策略来选择难以识别的样本,以改进分类质量。在该数据集上进行了试验验证,并进行了试验对比和分析,试验结果表明,本文方法能够较好地利用未标号菊花样本提升分类的精度,随着标号百分比从6.25%升至23%,识别精度达到0.7以上,标号百分比在81.25%时,平均识别精度和召回率分别达到0.91和0.88。 展开更多
关键词 菊花表型分类 监督学习 模型 one-hot编码 主动学习 熵最大化
在线阅读 下载PDF
结合主动学习与标签传递算法的高光谱图像分类 被引量:3
16
作者 王立国 商卉 石瑶 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第5期731-737,共7页
与自然真彩色图像相比,高光谱图像维数高、有标记的数据少。针对传统的分类方法主要利用光谱特征忽略了空间信息的提取的问题,本文提出了一种基于空-谱信息融合的主动学习与标签传递算法相结合的分类框架。基于概率模型的BT(Breaking Ti... 与自然真彩色图像相比,高光谱图像维数高、有标记的数据少。针对传统的分类方法主要利用光谱特征忽略了空间信息的提取的问题,本文提出了一种基于空-谱信息融合的主动学习与标签传递算法相结合的分类框架。基于概率模型的BT(Breaking Ties,BT)策略筛选出具有代表性的未标记样本,作为新的训练样本扩充训练样本集。标签传递算法推测未标记样本真正的类别信息,由分类器进行重新训练。实验表明:在有标签样本不充足的情况下,Indian Pines数据集分类精度达到76.89%,帕维亚大学数据集分类精度为95.23%,优于现有的几种分类算法。在标签样本稀缺的情况下,本文算法可以利用半监督学习与主动学习相结合的方法有效提高分类精度。 展开更多
关键词 高光谱 监督分类 空谱信息 主动学习 标签传递 主成分分析 GABOR滤波 支持向量机
在线阅读 下载PDF
半监督分类学习问题在生物信息学中的研究进展——以间谍算法为例 被引量:1
17
作者 赵琪 张越 +1 位作者 胡桓 刘宏生 《辽宁大学学报(自然科学版)》 CAS 2019年第1期25-30,共6页
近年来,随着生命科学研究的不断发展,生物信息学这个利用智能算法处理生物数据的新型交叉学科越来越受到科研工作者的关注.机器学习在智能算法的研究中占据极其重要的地位,而机器学习中的半监督分类学习在生物信息学中有着广泛应用.以... 近年来,随着生命科学研究的不断发展,生物信息学这个利用智能算法处理生物数据的新型交叉学科越来越受到科研工作者的关注.机器学习在智能算法的研究中占据极其重要的地位,而机器学习中的半监督分类学习在生物信息学中有着广泛应用.以半监督分类学习中的间谍算法为例,首先回顾了半监督分类学习的发展历程,分析了该方法的研究现状,然后描述了间谍算法在生物信息学研究中的应用,最后总结了间谍算法的优势和局限性,并且讨论了可以改进的方向和未来的发展. 展开更多
关键词 生物信息学 智能算法 监督分类学习 间谍算法
在线阅读 下载PDF
基于核方法的半监督超图顶点分类算法分析 被引量:1
18
作者 贾志洋 高炜 《云南师范大学学报(自然科学版)》 2013年第1期46-49,共4页
分类学习算法的研究是计算机科学的研究热点,超图上顶点的分类问题作为一般图顶点分类问题的推广,被广泛应用于各种计算模型。对基于核方法的半监督超图顶点分类算法进行理论分析,给出算法的收敛性分析和广义界估计值。
关键词 分类算法 监督学习 收缩因子
在线阅读 下载PDF
基于主动半监督深度学习的归纳一致性预测算法及其应用 被引量:2
19
作者 李国强 龚宁 《高技术通讯》 CAS 2021年第5期500-508,共9页
在图像分类中,图像标签的获取是昂贵的和费时的。为了减少标注成本,提出了一种主动半监督深度学习的归纳一致性预测算法(ICP-ASSDL),该算法使用一种新颖的奇异值度量来产生可靠的置信度。ICP-ASSDL用4个标准(信息质量、边缘抽样、多样... 在图像分类中,图像标签的获取是昂贵的和费时的。为了减少标注成本,提出了一种主动半监督深度学习的归纳一致性预测算法(ICP-ASSDL),该算法使用一种新颖的奇异值度量来产生可靠的置信度。ICP-ASSDL用4个标准(信息质量、边缘抽样、多样性和面向类别度量)从未标记池中选取实例来提高分类性能。面向类别度量采用蒙德里安一致性预测算法来减弱非平衡问题的影响。最后通过4个图像数据集(MNIST、FashionMNIST、SVHN和CIFAR10)进行了实验,实验结果表明,相对于其他方法,本文所提出的方法在只有少量标签样本的情况下,可以获得更高的分类精度。 展开更多
关键词 主动学习 监督学习 分类 一致性预测器 深度学习
在线阅读 下载PDF
半监督图节点分类任务的清洁标签后门植入
20
作者 杨潇 李高磊 《电子科技》 2024年第9期57-63,共7页
半监督图学习旨在使用给定图中的各种先验知识推断未标记节点或图的类别,通过提升数据标注的自动化,使其具有较高的节点分类效率。作为一种深度学习架构,半监督图学习也面临后门攻击威胁,但目前尚未出现对半监督图节点分类任务有效的后... 半监督图学习旨在使用给定图中的各种先验知识推断未标记节点或图的类别,通过提升数据标注的自动化,使其具有较高的节点分类效率。作为一种深度学习架构,半监督图学习也面临后门攻击威胁,但目前尚未出现对半监督图节点分类任务有效的后门攻击方法。文中提出了一种针对半监督图节点分类模型的持久性清洁标签后门攻击方法,通过在未标记的训练数据上自适应地添加触发器和对抗扰动生成中毒样本,并在不修改标签的情况下训练得到中毒的半监督图节点分类模型。而攻击者可以较为隐蔽地对模型进行投毒,且投毒率不高于4%。同时为了保证后门在模型中的持久性,设计了一种超参数调节策略以选择最佳的对抗扰动尺寸。在多个半监督图节点分类模型与开源数据集上进行的大量实验,结果表明所提方法的攻击成功率最高可达96.25%,而模型在正常样本上的分类精度几乎没有损失。 展开更多
关键词 监督学习 神经网络 节点分类 对抗样本 数据投毒 后门攻击 持久性攻击 清洁标签后门
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部