以(NH_4)_6Mo_7O_(24)·4H_2O为钼源,以Sn_Cl_2·2H_2O为锡源,采用简单的溶剂热法经低温退火合成SnO_2-MoO_3前驱体;再进一步与硫氰化钾水热反应经低温煅烧即可得到Sn/MoS_2复合物.通过XRD,SEM等对合成材料的结构和形貌进行表征...以(NH_4)_6Mo_7O_(24)·4H_2O为钼源,以Sn_Cl_2·2H_2O为锡源,采用简单的溶剂热法经低温退火合成SnO_2-MoO_3前驱体;再进一步与硫氰化钾水热反应经低温煅烧即可得到Sn/MoS_2复合物.通过XRD,SEM等对合成材料的结构和形貌进行表征,采用恒流充、放电系统对合成材料的电化学性能进行了测试.结果表明:所合成的纯MoS_2纳米结构在作为锂离子电池负极材料时,具有较高的初始放电容量,但循环性能较差.所制得的Sn/MoS_2复合材料,大大改善了MoS_2的循环性能.当电流密度为100 m A·g^(-1)时,在0. 01 3. 0 V的电压窗口下循环70次后,Sn/MoS_2复合物的放电容量可以保持在725 m Ah·g^(-1),具有较高的可逆比容量和优良的循环性能,为研究高比容量和循环性能稳定的新型锂离子电池负极材料提供了实践依据.展开更多
二维半导体过渡金属二硫属化物(transition metal dichalcogenide,TMD)具有独特的电学、光学和力学性能,在数字电路、光伏器件和能量存储等多个领域中具有巨大的应用潜力。通过表面掺杂控制TMD的电学性能为实现灵敏传感提供了有效的方...二维半导体过渡金属二硫属化物(transition metal dichalcogenide,TMD)具有独特的电学、光学和力学性能,在数字电路、光伏器件和能量存储等多个领域中具有巨大的应用潜力。通过表面掺杂控制TMD的电学性能为实现灵敏传感提供了有效的方法。本文开展了氧等离子体对二硫化钼(MoS_(2))掺杂特性的研究。首先,测试了MoS_(2)场效应晶体管(field-effect transistor,FET)的输运特性,发现氧等离子体处理对FET具有p型掺杂作用。随后,通过拉曼光谱研究了掺杂机制的成因,并证实了沟道表面类MoO_(3)缺陷的形成。最后,研究了经等离子体处理的晶体管的湿度传感特性,由于氧等离子体处理使得沟道对水分子的吸收中心增加,在潮湿环境下晶体管具有十分灵敏的响应特性,源漏电流值变化了约54%。这项工作不仅提供了一种调控TMD电学性能的简单方法,也展示了低维材料化学传感器的发展潜力。展开更多
The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clu...The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clusters via the metal-vacancy restraint mechanism,which can precisely regulate the bonding and valence state of heterometal atoms doped in 2D molybdenum disulfide.The unsaturated valence state of heterometal Pt and Ru cluster atoms form a spatial coordination structure with Pt–S and Ru–O–S as catalytically active sites.Among them,the strong binding energy of negatively charged suspended S and O sites for H+,as well as the weak adsorption of positively charged unsaturated heterometal atoms for H*,reduces the energy barrier of the hydrogen evolution reaction proved by theoretical calculation.Whereupon,the electrocatalytic hydrogen evolution performance is markedly improved by the ensemble effect of unsaturated heterometal atoms and highlighted with an overpotential of 84 mV and Tafel slope of 68.5 mV dec^(−1).In brief,this metal vacancy-induced valence state regulation of heterometal can manipulate the coordination structure and catalytic activity of heterometal atoms doped in the 2D atomic lattice but not limited to 2D nanomaterials.展开更多
文摘以(NH_4)_6Mo_7O_(24)·4H_2O为钼源,以Sn_Cl_2·2H_2O为锡源,采用简单的溶剂热法经低温退火合成SnO_2-MoO_3前驱体;再进一步与硫氰化钾水热反应经低温煅烧即可得到Sn/MoS_2复合物.通过XRD,SEM等对合成材料的结构和形貌进行表征,采用恒流充、放电系统对合成材料的电化学性能进行了测试.结果表明:所合成的纯MoS_2纳米结构在作为锂离子电池负极材料时,具有较高的初始放电容量,但循环性能较差.所制得的Sn/MoS_2复合材料,大大改善了MoS_2的循环性能.当电流密度为100 m A·g^(-1)时,在0. 01 3. 0 V的电压窗口下循环70次后,Sn/MoS_2复合物的放电容量可以保持在725 m Ah·g^(-1),具有较高的可逆比容量和优良的循环性能,为研究高比容量和循环性能稳定的新型锂离子电池负极材料提供了实践依据.
基金National Natural Science Foundation of China(No.62005042)。
文摘二维半导体过渡金属二硫属化物(transition metal dichalcogenide,TMD)具有独特的电学、光学和力学性能,在数字电路、光伏器件和能量存储等多个领域中具有巨大的应用潜力。通过表面掺杂控制TMD的电学性能为实现灵敏传感提供了有效的方法。本文开展了氧等离子体对二硫化钼(MoS_(2))掺杂特性的研究。首先,测试了MoS_(2)场效应晶体管(field-effect transistor,FET)的输运特性,发现氧等离子体处理对FET具有p型掺杂作用。随后,通过拉曼光谱研究了掺杂机制的成因,并证实了沟道表面类MoO_(3)缺陷的形成。最后,研究了经等离子体处理的晶体管的湿度传感特性,由于氧等离子体处理使得沟道对水分子的吸收中心增加,在潮湿环境下晶体管具有十分灵敏的响应特性,源漏电流值变化了约54%。这项工作不仅提供了一种调控TMD电学性能的简单方法,也展示了低维材料化学传感器的发展潜力。
基金supported by the National Natural Science Foundation of China(22205209,52202373 and U21A200972)China Postdoctoral Science Foundation(2022M722867)Key Research Project of Higher Education Institutions in Henan Province(23A530001)。
文摘The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clusters via the metal-vacancy restraint mechanism,which can precisely regulate the bonding and valence state of heterometal atoms doped in 2D molybdenum disulfide.The unsaturated valence state of heterometal Pt and Ru cluster atoms form a spatial coordination structure with Pt–S and Ru–O–S as catalytically active sites.Among them,the strong binding energy of negatively charged suspended S and O sites for H+,as well as the weak adsorption of positively charged unsaturated heterometal atoms for H*,reduces the energy barrier of the hydrogen evolution reaction proved by theoretical calculation.Whereupon,the electrocatalytic hydrogen evolution performance is markedly improved by the ensemble effect of unsaturated heterometal atoms and highlighted with an overpotential of 84 mV and Tafel slope of 68.5 mV dec^(−1).In brief,this metal vacancy-induced valence state regulation of heterometal can manipulate the coordination structure and catalytic activity of heterometal atoms doped in the 2D atomic lattice but not limited to 2D nanomaterials.