期刊文献+
共找到2,429篇文章
< 1 2 122 >
每页显示 20 50 100
基于参数优化多核支持向量机的光伏功率预测算法 被引量:1
1
作者 贺亦琛 师长立 +2 位作者 郭小强 贺伟 韩涛 《太阳能学报》 EI CAS CSCD 北大核心 2024年第9期394-404,共11页
准确的光伏功率预测对电力系统的稳定运行具有重大意义。针对现有预测算法在处理多维输入天气变量时存在的运算时间过长和特征提取能力较差的问题,提出一种基于参数优化的多核函数支持向量机的预测算法。首先,该新型算法对数据进行预处... 准确的光伏功率预测对电力系统的稳定运行具有重大意义。针对现有预测算法在处理多维输入天气变量时存在的运算时间过长和特征提取能力较差的问题,提出一种基于参数优化的多核函数支持向量机的预测算法。首先,该新型算法对数据进行预处理,灰色关联度提取与预测日相似度高的历史日以提升预测精度,主成分分析(PCA)对输入数据进行降维,从而提高光伏功率预测的速度。其次,针对单核支持向量机对多维数据特征提取能力相对较差的问题,基于线性核函数和径向基核函数建立多核支持向量机预测模型,根据每个核函数支持向量机的预测误差计算不同的权重,从而增强对输入数据特征提取能力并提高预测精度。采用灰狼优化(GWO)算法确定不同核函数支持向量机的参数以提高预测精度。最后,通过北京某光伏电站的历史数据集验证了该算法的预测效果。实例分析表明,与传统预测算法相比,预测精度和速度都有显著提高。 展开更多
关键词 光伏 预测 主成分分析 支持向量 灰狼优化算法
在线阅读 下载PDF
基于支持向量机的棋盘数据分类研究
2
作者 高光耀 杨婧敏 杨永生 《人工智能与机器人研究》 2025年第1期173-182,共10页
本文旨在探索支持向量机(SVM)在棋盘数据分类中的应用效果及其性能,特别是在国际象棋和围棋等棋类游戏的局面分类问题上。通过对不同参数设置下的SVM模型进行实验,本文分析了线性核、多项式核及径向基函数(RBF)核SVM在处理高维、复杂棋... 本文旨在探索支持向量机(SVM)在棋盘数据分类中的应用效果及其性能,特别是在国际象棋和围棋等棋类游戏的局面分类问题上。通过对不同参数设置下的SVM模型进行实验,本文分析了线性核、多项式核及径向基函数(RBF)核SVM在处理高维、复杂棋局数据时的准确率和泛化能力。本文对比了多种SVM模型在棋盘数据上的分类性能,通过交叉验证和细致的参数调优过程,选出了最优模型。实验结果表明,SVM模型尤其是采用RBF核的模型,在棋盘数据分类任务中展示出了显著的性能优势,包括高准确率和良好的泛化能力。此外,实验也揭示了特征选择和模型参数调优在提高分类性能中的重要性。This paper aims to explore the application effect and performance of support vector machine (SVM) in chessboard data classification, especially in the situation classification of chess and go. Through experiments on SVM models with different parameter settings, the accuracy and generalization ability of linear kernel, polynomial kernel and radial basis function (RBF) kernel SVM in processing high-dimensional and complex chess data are analyzed in this study. In this paper, the classification performance of multiple SVM models on chessboard data is compared, and the optimal model is selected through cross-validation and meticulous parameter tuning process. The experimental results show that the SVM model, especially the model with RBF kernel, shows significant performance advantages in chessboard data classification tasks, including high accuracy and good generalization ability. In addition, the experiment also reveals the importance of feature selection and model parameter tuning in improving classification performance. 展开更多
关键词 支持向量 函数 参数调优 模式识别
在线阅读 下载PDF
基于递归定量分析与多核学习支持向量机的玻璃纤维增强复合材料缺陷识别技术
3
作者 郭伟 王召巴 +1 位作者 陈友兴 吴其洲 《测试技术学报》 2024年第1期79-84,共6页
为了提高玻璃纤维增强复合材料(Glass Fiber Reinforced Polymer,GFRP)超声检测中缺陷识别技术的准确性,提出基于递归定量分析(Recurrence Quantitative Analysis,RQA)与多核学习支持向量机(MKLSVM)相结合的检测模型,以提高检测GFRP中... 为了提高玻璃纤维增强复合材料(Glass Fiber Reinforced Polymer,GFRP)超声检测中缺陷识别技术的准确性,提出基于递归定量分析(Recurrence Quantitative Analysis,RQA)与多核学习支持向量机(MKLSVM)相结合的检测模型,以提高检测GFRP中不同类型缺陷的能力。结果表明,该模型能够准确识别GFRP中的分层缺陷与夹杂缺陷,检测识别率达到92.92%,并且与基于离散小波变换(Discrete Wavelet Transform,DWT)和经验模态分解(Empirical Mode Decomposition,EMD)的MKLSVM检测模型的识别率相比,所提出的检测模型的识别率分别提高了7.5%和3.75%。 展开更多
关键词 玻璃纤维增强复合材料 超声检测 递归定量分析 学习支持向量
在线阅读 下载PDF
基于改进核函数的支持向量机天然气脱硫装置故障诊断方法
4
作者 何宇琪 张波 +1 位作者 王俊超 熊鹏 《天然气与石油》 2024年第4期94-100,共7页
针对传统脱硫故障诊断方法反应慢、诊断准确率低的问题,根据Mercer理论,改进了支持向量机(Support Vector Machine,SVM)的核函数及其参数,建立了一个由多项式核函数、Sigmoid核函数和高斯径向基核函数复合成的改进核函数,在此基础上提... 针对传统脱硫故障诊断方法反应慢、诊断准确率低的问题,根据Mercer理论,改进了支持向量机(Support Vector Machine,SVM)的核函数及其参数,建立了一个由多项式核函数、Sigmoid核函数和高斯径向基核函数复合成的改进核函数,在此基础上提出了一种基于改进核函数的SVM天然气脱硫装置故障诊断方法。相对于传统SVM,改进SVM体现了各单一核函数的优点,并具有更好的学习效率及诊断准确率,在小样本数据条件下仍然具有较好的泛化能力。利用HYSYS软件建模并与现场数据进行对比实验,由实验结果可知改进SVM的误差率降低到传统SVM误差率的约30%,验证了新方法能有效提高脱硫装置故障诊断的准确率和效率。研究结果有助于天然气脱硫装置故障诊断系统工作的智能化开展,同时也为故障诊断方法的研究提供了借鉴。 展开更多
关键词 改进函数 支持向量 HYSYS 天然气脱硫 故障诊断
在线阅读 下载PDF
多核支持向量机预测电网系统可靠性
5
作者 何井龙 张福泉 +1 位作者 阳晟 周智成 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第4期462-467,共6页
为了改善电网系统可靠性预测性能,构建多个目标函数并采用多核支持向量机算法对配电网进行可靠性预测;从电网样本特征中筛选供电可用率、户均停电时间、户均停电次数3个关键指标,建立可靠性评价目标函数,且采用多核支持向量机训练可靠... 为了改善电网系统可靠性预测性能,构建多个目标函数并采用多核支持向量机算法对配电网进行可靠性预测;从电网样本特征中筛选供电可用率、户均停电时间、户均停电次数3个关键指标,建立可靠性评价目标函数,且采用多核支持向量机训练可靠性指标特征;将高斯核函数、多项式核函数和Sigmoid核函数进行多核组合,采用多核支持向量机求解不同目标函数,获得电网系统可靠性预测结果,进而确定更佳的可靠性预测核函数组合。结果表明,合理选择核函数组合和电网可靠性指标,多核支持向量机对供电可用率、户均停电时间和户均停电次数指标预测准确率较高,且稳定性好,高斯核函数-Sigmoid核函数组合的可靠性预测准确性最佳,高斯核函数-多项式核函数-Sigmoid核函数组合的预测稳定性最好。 展开更多
关键词 电网系统可靠性 函数 支持向量 目标函数
在线阅读 下载PDF
基于Optuna框架的L_(p)范数约束下多核支持向量机在违约风险预测中的应用
6
作者 郑怡昕 王重仁 《现代电子技术》 北大核心 2024年第6期147-153,共7页
针对违约数据存在数据量大、维度多、不平衡及噪声大等缺点,提出一种改进的支持向量机方法,即基于Optuna框架的L_(p)范数约束的代价敏感的多核支持向量机(L_(p)-Optuna-SVM)。该方法采用成本矩阵对不同预测错误赋予不同数值,通过多核学... 针对违约数据存在数据量大、维度多、不平衡及噪声大等缺点,提出一种改进的支持向量机方法,即基于Optuna框架的L_(p)范数约束的代价敏感的多核支持向量机(L_(p)-Optuna-SVM)。该方法采用成本矩阵对不同预测错误赋予不同数值,通过多核学习引入多核混合核函数组合;同时采用Optuna优化框架对犯错成本、核函数的参数和权重实现了自动化的调优过程;还在核函数权重上引入L_(p)范数约束,以提高模型对噪声和异常数据的鲁棒性。最后,对4种常用的基础核函数组合的L_(p)-Optuna-SVM进行探讨,并与单核支持向量机以及K邻近法、逻辑回归、高斯贝叶斯进行对比。结果表明,在给定数据集上,L_(p)-Optuna-SVM在违约数据上的g-mean和AUC均高于其他算法,并且在加了不同方差的噪声数据集上,该算法整体依旧保持较好的鲁棒性。 展开更多
关键词 支持向量 Optuna优化框架 L_(p)范数约束 学习 不平衡数据集 违约风险预测
在线阅读 下载PDF
基于核支持向量机的电力系统暂态稳定评估模型
7
作者 刘艳 杜成康 +3 位作者 吴春 杨燕 白中状 邓涛 《无线电工程》 2024年第12期2780-2788,共9页
随着计算机技术的发展,诸多领域开始向智能化方向转型,空间数据智能技术的应用日益受到关注。电力系统是整个电网运行的重要组成部分,也是电子元器件和电子设备的工作空间,如何对电力系统的稳定性进行评估是保证其稳定运行的关键。针对... 随着计算机技术的发展,诸多领域开始向智能化方向转型,空间数据智能技术的应用日益受到关注。电力系统是整个电网运行的重要组成部分,也是电子元器件和电子设备的工作空间,如何对电力系统的稳定性进行评估是保证其稳定运行的关键。针对电力系统的暂态评估问题,融合空间数据智能技术,对样本数据进行数据采集和特征提取模型的构建。利用支持向量机(Support Vector Machine, SVM)算法提高电力系统性能,引入核函数和马氏距离对SVM算法进行优化,建立了基于核SVM(Kernel SVM,KSVM)的电力系统暂态评估模型。在电力系统数据集上进行实验,结果表明所提模型KSVM精确率为95.62%,比卷积神经网络算法高11.36%。 展开更多
关键词 电力系统 暂态 支持向量 函数 马氏距离
在线阅读 下载PDF
基于网格搜索和交叉验证的支持向量机在梯级水电系统隐随机调度中的应用 被引量:71
8
作者 纪昌明 周婷 +1 位作者 向腾飞 黄海涛 《电力自动化设备》 EI CSCD 北大核心 2014年第3期125-131,共7页
将支持向量机(SVM)理论与网格搜索及交叉验证相结合,应用于梯级水电系统隐随机优化调度中,实现径流不确定条件下的梯级实际优化运行。以系统结构风险最小为SVM训练目标,结合参数分布规律,采用指数划分的网格搜索对模型参数进行优选;将K-... 将支持向量机(SVM)理论与网格搜索及交叉验证相结合,应用于梯级水电系统隐随机优化调度中,实现径流不确定条件下的梯级实际优化运行。以系统结构风险最小为SVM训练目标,结合参数分布规律,采用指数划分的网格搜索对模型参数进行优选;将K-fold交叉验证技术引入到SVM训练性能评价中,降低了训练样本随机性对训练模型性能的干扰,提高了模型的泛化能力。建立VC_与MATLAB混合编程平台,对梯级水电系统隐随机优化调度运行进行仿真,结果表明基于采用最优参数SVM的隐随机优化调度在梯级系统发电量和发电过程方面取得了良好成果。 展开更多
关键词 支持向量 网格搜索 交叉验证 混合编程 梯级水电系统 优化 水电
在线阅读 下载PDF
应用多分类多核学习支持向量机的变压器故障诊断方法 被引量:97
9
作者 郭创新 朱承治 +2 位作者 张琳 彭明伟 刘毅 《中国电机工程学报》 EI CSCD 北大核心 2010年第13期128-134,共7页
提出一种基于多分类多核学习支持向量机的变压器故障诊断方法,相对于传统的2分类支持向量机,该方法有如下特点:算法针对单一的优化目标函数求解,只需设计1组参数,降低了支持向量机在解决多类问题中模型构造和参数选择的难度;核函数是多... 提出一种基于多分类多核学习支持向量机的变压器故障诊断方法,相对于传统的2分类支持向量机,该方法有如下特点:算法针对单一的优化目标函数求解,只需设计1组参数,降低了支持向量机在解决多类问题中模型构造和参数选择的难度;核函数是多个基核函数的组合,提高了分类的精度;将模型分解为2个凸优问题进行求解,问题的复杂度低,求解速度快。诊断实例表明,该方法能保证较高的诊断准确率,具有较好的实用性和推广性。 展开更多
关键词 变压器 故障诊断 支持向量 多分类多学习
在线阅读 下载PDF
基于核函数支持向量回归机的耕地面积预测 被引量:42
10
作者 王霞 王占岐 +1 位作者 金贵 杨俊 《农业工程学报》 EI CAS CSCD 北大核心 2014年第4期204-211,共8页
科学预测耕地保有量是耕地保护的基础,对缓解用地矛盾、保证粮食安全具有重要指导意义。为探讨不同核函数支持向量回归机(support vector regression,SVR)对耕地面积预测的影响,该文以惠州市为例,分别采用多元回归、BP神经网络及3种不... 科学预测耕地保有量是耕地保护的基础,对缓解用地矛盾、保证粮食安全具有重要指导意义。为探讨不同核函数支持向量回归机(support vector regression,SVR)对耕地面积预测的影响,该文以惠州市为例,分别采用多元回归、BP神经网络及3种不同核函数SVR建立耕地面积预测模型并进行对比试验。预测结果精度分析显示,RBF核函数SVR预测结果平均相对误差为0.54%,均方根误差为0.007,精度最高;Sigmoid核函数SVR预测结果对应误差分别为1.12%及0.012,精度次之;多项式核函数SVR预测结果对应误差为分别为2.71%及0.032,高于BP神经网络模型,但低于多元回归模型。研究表明,在现有3种常用核函数SVR耕地面积预测模型中,基于RBF核函数SVR模型预测能力最强,其次是sigmoid核函数;而多项式核函数则效果较差。 展开更多
关键词 土地利用 支持向量 预测 耕地 函数 惠州市
在线阅读 下载PDF
顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价 被引量:26
11
作者 刘纪平 梁恩婕 +4 位作者 徐胜华 刘猛猛 王勇 张福浩 罗安 《测绘学报》 EI CSCD 北大核心 2022年第10期2034-2045,共12页
滑坡灾害易发性分析评价对地质灾害的防治与管理具有重要意义。针对滑坡灾害样本选择策略,单核支持向量机多特征映射不合理的问题,本文提出顾及样本优化选择的多核支持向量机(multiple kernel support vector machine,MKSVM)滑坡灾害易... 滑坡灾害易发性分析评价对地质灾害的防治与管理具有重要意义。针对滑坡灾害样本选择策略,单核支持向量机多特征映射不合理的问题,本文提出顾及样本优化选择的多核支持向量机(multiple kernel support vector machine,MKSVM)滑坡灾害易发性分析评价方法。为了保证样本平衡性并提高负样本的合理性,采用相对频率比(relative frequency,RF)综合评价各状态对于滑坡灾害易发性影响的重要程度,实现各评价因子状态的合理划分;利用确定性系数法(certainty factor,CF)计算各评价因子各状态分级影响滑坡灾害的敏感性,并在此基础上进行加权求和得到各栅格单元的滑坡灾害易发性指数,在滑坡灾害易发性指数极低和低易发区内随机选择与滑坡灾害点数目一致的非滑坡灾害点作为负样本数据。利用MKSVM对各特征空间最优核函数进行线性组合,解决了单一核函数映射不合理的问题,提高了模型的分类准确率和预测精度。以湖南省湘西土家族苗族自治州为研究区,从滑坡灾害易发性分区图、分区统计及评价模型精度3个方面对CF样本策略的MKSVM模型、CF样本策略的单核SVM模型、随机样本策略的MKSVM模型、随机样本策略的单核SVM模型进行了对比分析。结果表明,4种模型的受试者工作特征曲线(receiver operating characteristic,ROC)下的面积(area under curve,AUC)分别为0.859、0.809、0.798、0.766,验证了CF样本策略的合理性、有效性及MKSVM模型的可靠性。 展开更多
关键词 滑坡 易发性 确定性系数 支持向量
在线阅读 下载PDF
基于支持向量机与特征降维的直流断路器机械故障诊断技术研究 被引量:5
12
作者 夏加富 叶奕君 +4 位作者 郭嘉俊 谭佳明 杨爱军 王小华 荣命哲 《高压电器》 CAS CSCD 北大核心 2024年第2期51-61,共11页
直流断路器机械故障诊断算法是直流断路器机械状态在线监测系统的核心部分。文中进行了直流断路器机械故障模拟实验,采集不同故障下的线圈电流及振动信号,对其进行特征提取后,将电流特征、振动短时能量特征、小波包频带能量特征排列组合... 直流断路器机械故障诊断算法是直流断路器机械状态在线监测系统的核心部分。文中进行了直流断路器机械故障模拟实验,采集不同故障下的线圈电流及振动信号,对其进行特征提取后,将电流特征、振动短时能量特征、小波包频带能量特征排列组合,利用支持向量机构建故障诊断模型。文中使用主成分分析法及Relief⁃F算法对不同特征组合降维,进一步分析特征组合降维后的诊断效果,并通过K⁃Fold交叉验证算法评估单一特征和特征组合训练输出的诊断模型选取分类性能最优的诊断模型。 展开更多
关键词 直流断路器 械故障诊断 支持向量 特征降维 交叉验证
在线阅读 下载PDF
组合核函数支持向量机高光谱图像融合分类 被引量:23
13
作者 高恒振 万建伟 +2 位作者 粘永健 王力宝 徐湛 《光学精密工程》 EI CAS CSCD 北大核心 2011年第4期878-883,共6页
针对高光谱图像分类,提出了一种利用组合核函数融合目标光谱域和空域信息的支持向量机学习算法。该算法首先用主成分分析方法对高光谱图像进行特征提取和降维,用虚拟维数估计策略预估原始图像的本征维数,并且在预估的基础上确定要保留... 针对高光谱图像分类,提出了一种利用组合核函数融合目标光谱域和空域信息的支持向量机学习算法。该算法首先用主成分分析方法对高光谱图像进行特征提取和降维,用虚拟维数估计策略预估原始图像的本征维数,并且在预估的基础上确定要保留的主成份分量数目;然后用数学形态学操作在选取的主分量图像上提取目标的形态信息,得到扩展的空域形态矢量。最后,通过不同的组合策略,构造组合核函数,从而在分类器中引入空域信息,和原有的谱域信息一起,利用支持向量机进行分类。高光谱数据实验表明,在训练时间没有显著差别的情况下,总体分类精度和Kappa系数均提高了2%左右。实验表明,本文提出的方法较单独使用谱域或空域信息进行分类具有一定的优越性。 展开更多
关键词 高光谱图像 图像融合 数学形态学 组合函数 支持向量
在线阅读 下载PDF
基于核主元分析和邻近支持向量机的汽轮机凝汽器过程监控和故障诊断 被引量:33
14
作者 张曦 阎威武 +1 位作者 刘振亚 邵惠鹤 《中国电机工程学报》 EI CSCD 北大核心 2007年第14期56-61,共6页
提出了基于核主元分析(KPCA)和邻近支持向量机(PSVM)的汽轮机凝汽器过程监控和故障诊断新方法,将数据先用核主元法进行分析和处理,即通过非线性变换将样本数据从输入空间映射到高维特征空间,然后在高维特征空间中进行特征提取,若数据的H... 提出了基于核主元分析(KPCA)和邻近支持向量机(PSVM)的汽轮机凝汽器过程监控和故障诊断新方法,将数据先用核主元法进行分析和处理,即通过非线性变换将样本数据从输入空间映射到高维特征空间,然后在高维特征空间中进行特征提取,若数据的Hotelling’sT2和Q统计量超过控制限,说明有故障发生,则计算样本的非线性主元得分向量,并将其作为输入值送入已训练好的邻近支持向量机进行故障类型识别。该方法可以有效地捕捉变量间的非线性关系,过程监控和故障诊断效果明显好于PCA-PSVM法。汽轮机历史故障特征数据集仿真试验证明了该方法的有效性。 展开更多
关键词 主元分析 邻近支持向量 过程监控 故障诊断
在线阅读 下载PDF
系统辨识中支持向量机核函数及其参数的研究 被引量:79
15
作者 荣海娜 张葛祥 金炜东 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第11期3204-3208,3226,共6页
具有不同核函数和参数的支持向量机(SVM)的性能存在很大差异,核函数及其参数的选择是SVM应用和理论研究中的一个重要问题。在简要介绍非线性系统辨识的支持向量机方法后,重点对常用的核函数及其参数的选择进行了研究,并采用具有不同核... 具有不同核函数和参数的支持向量机(SVM)的性能存在很大差异,核函数及其参数的选择是SVM应用和理论研究中的一个重要问题。在简要介绍非线性系统辨识的支持向量机方法后,重点对常用的核函数及其参数的选择进行了研究,并采用具有不同核函数的SVM进行非线性系统辨识。大量实验结果表明,采用SVM方法进行系统辨识时,径向基核函数(RBKF)比其它核函数的辨识效果好,且RBKF的参数选择较容易,当参数在有效范围内改变时,空间复杂度变化小,易于实现。因此,RBKF是系统辨识SVM的较好选择。 展开更多
关键词 支持向量 函数 系统辨识 非线性系统
在线阅读 下载PDF
一种自主核优化的二值粒子群优化–多核学习支持向量机变压器故障诊断方法 被引量:24
16
作者 尹玉娟 王媚 +3 位作者 张金江 袁鹏 詹俊鹏 郭创新 《电网技术》 EI CSCD 北大核心 2012年第7期249-254,共6页
支持向量机(support vector machine,SVM)对于核函数及模型参数十分敏感,多核学习可降低模型的参数敏感性。提出了基于二值粒子群优化(binary particle swarmoptimization,BPSO)的多核学习SVM分类方法(BPSO-MKSVC)进行变压器故障诊断。... 支持向量机(support vector machine,SVM)对于核函数及模型参数十分敏感,多核学习可降低模型的参数敏感性。提出了基于二值粒子群优化(binary particle swarmoptimization,BPSO)的多核学习SVM分类方法(BPSO-MKSVC)进行变压器故障诊断。多核学习支持向量机(multi-kernel support vector classifier,MKSVC)采用由多个基核线性组合的多核进行学习,其中每一个基核完成从特定样本空间提取故障特征,通过多面故障特征的线性组合,将学习分类问题转化为相应的凸规划问题进行迭代求解。采用BPSO优化算法对MKSVC中的基核数及模型参数进行优化,实现了参数的自主选择。与常用诊断算法相比,BPSO-MKSVC具有更高的诊断精度;与PSO优化的SVM方法相比,其具有更低的参数敏感性和更好的鲁棒性。 展开更多
关键词 溶解气体分析 支持向量 学习 二值粒子群优化 故障诊断 变压器
在线阅读 下载PDF
基于类间距的径向基函数-支持向量机核参数评价方法分析 被引量:16
17
作者 宋小杉 蒋晓瑜 +1 位作者 罗建华 姚军 《兵工学报》 EI CAS CSCD 北大核心 2012年第2期203-208,共6页
分析了径向基函数(RBF)核参数γ对空间映射结果的影响,得出3条结论。在此基础上,找到了1种新的核参数评价方法,该方法通过计算特征空间中两类之间的平均距离(ICMD)来评价γ的优劣。文章分别从理论和实验两方面证明了ICMD最大值的存在性... 分析了径向基函数(RBF)核参数γ对空间映射结果的影响,得出3条结论。在此基础上,找到了1种新的核参数评价方法,该方法通过计算特征空间中两类之间的平均距离(ICMD)来评价γ的优劣。文章分别从理论和实验两方面证明了ICMD最大值的存在性。为验证该方法的有效性,文中对7个样本集进行了两组参数选择实验:第一组实验通过ICMD找到最优核参数γ,再由10-折交叉验证得到最优惩罚因子C,称为"两步法";第二组实验采用基于10-折交叉验证的网格搜索法进行参数选择。结果显示两种方法均选择出了适当的参数,但前者花费的时间比后者大大缩短,验证了ICMD方法的有效性。 展开更多
关键词 人工智能 支持向量 高斯 参数评价 参数选择
在线阅读 下载PDF
组合核支持向量机在放电模式识别中的优化策略 被引量:25
18
作者 王瑜 苑津莎 +1 位作者 尚海昆 靳松 《电工技术学报》 EI CSCD 北大核心 2015年第2期229-236,共8页
传统的单一核函数SVM无法实现局部放电中的多特征空间向量的映射分类,且目前SVM大都采用不同尺度的径向基函数作为核函数,核的调整空间较为有限,无法针对不同特征空间的放电参数达到普适的效果。针对上述问题,本文提出一种基于多分组特... 传统的单一核函数SVM无法实现局部放电中的多特征空间向量的映射分类,且目前SVM大都采用不同尺度的径向基函数作为核函数,核的调整空间较为有限,无法针对不同特征空间的放电参数达到普适的效果。针对上述问题,本文提出一种基于多分组特征的组合核多分类SVM的局部放电识别方法。该方法首先完成多类特征空间在不同类型SVM核函数中的映射分类,再采用骨干粒子群(BBPSO)优化方法选取最佳核参数,并求解核函数权值系数,最终形成最优核函数组合分类模型。实验结果表明,该方法对多个特征空间数据具有普适性,且融合效果理想,分类精度高于误差反向传播神经网络(BPNN)和SVM识别方法。 展开更多
关键词 局部放电 组合 支持向量 骨干粒子群 模式识别
在线阅读 下载PDF
求解非半正定核Huber-支持向量回归机问题的序列最小最优化算法 被引量:9
19
作者 周晓剑 马义中 +2 位作者 朱嘉钢 刘利平 汪建均 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第9期1178-1184,共7页
序列最小最优化(SMO)算法是求解大型支持向量机(SVM)问题的有效算法.已有的算法都要求核函数是正定的或半正定的,从而使其应用受到限制.针对这种缺点,本文提出一种新的的SMO算法,可求解非半正定核Huber-SVR问题.提出的算法在保证收敛的... 序列最小最优化(SMO)算法是求解大型支持向量机(SVM)问题的有效算法.已有的算法都要求核函数是正定的或半正定的,从而使其应用受到限制.针对这种缺点,本文提出一种新的的SMO算法,可求解非半正定核Huber-SVR问题.提出的算法在保证收敛的前提下可使非半正定Huber-SVR能够达到比较理想的回归精度,因而具有一定的理论意义和实用价值. 展开更多
关键词 支持向量 非半正定 序列最小最优化算法 Huber-支持向量回归
在线阅读 下载PDF
基于核主成分分析和支持向量回归机的红外光谱多组分混合气体定量分析 被引量:15
20
作者 郝惠敏 汤晓君 +2 位作者 白鹏 刘君华 朱长纯 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2008年第6期1286-1289,共4页
提出了一种核主成分分析(KPCA)特征提取结合支持向量回归机(SVR)的红外光谱混合气体组分定量分析新方法。首先将特征吸收谱线严重重叠的混合气体光谱通过非线性变换映射到高维特征空间,然后在特征空间中再利用主成分分析法提取主成分,... 提出了一种核主成分分析(KPCA)特征提取结合支持向量回归机(SVR)的红外光谱混合气体组分定量分析新方法。首先将特征吸收谱线严重重叠的混合气体光谱通过非线性变换映射到高维特征空间,然后在特征空间中再利用主成分分析法提取主成分,提取出的主成分作为SVR的输入建立校正模型,实现了甲烷、乙烷、丙烷、异丁烷、正丁烷、异戊烷以及正戊烷七种组组分特征吸收光谱严重重叠的混合气体的定量分析。用KPCA-SVR所建模型对未知浓度混合气体的七种组分预测的RMSE(φ×10-6)较仅用SVR模型预测的RMSE(φ×10-6)降低了一个数量级。结果表明,核主成分分析法具有很强的非线性特征提取能力,可以充分利用全光谱数据并有效地消除光谱数据噪声,降低数据维数,与支持向量回归机结合可以提高红外光谱分析的精度,缩短模型计算时间,是一种有效的红外光谱分析新方法。 展开更多
关键词 主成分分析 支持向量回归 校正模型 FTIR 定量分析
在线阅读 下载PDF
上一页 1 2 122 下一页 到第
使用帮助 返回顶部