为了准确求解交替方向隐式时域有限差分(Alternating Direction Implicit Finite-Difference Time-Domain,ADI-FDTD)方法实现理想电导体边界和理想磁导体边界的待求场分量系数,通过在获得该系数前应用理想导体边界条件,推导出了相应的...为了准确求解交替方向隐式时域有限差分(Alternating Direction Implicit Finite-Difference Time-Domain,ADI-FDTD)方法实现理想电导体边界和理想磁导体边界的待求场分量系数,通过在获得该系数前应用理想导体边界条件,推导出了相应的修正系数.计算了单个金属立方体和对称的两个金属立方体的双站雷达散射截面.结果表明:理想导体边界作为理想导体表面,采用修正系数的计算结果与时域有限差分(Finite-Difference Time-Domain,FDTD)方法计算结果更为吻合;理想导体边界作为截断计算空间对称面,采用修正系数的计算结果与ADI-FDTD方法计算结果相同,与理论推导结论一致.展开更多
研究了直驱风电场次同步振荡分析的降阶模型,提出了基于交替方向隐式(alternating direction implicit,ADI)的平衡截断方法。首先,根据直驱式永磁同步风电机组的数学表征搭建风电场的数学模型,采用ADI方法迭代求解李亚普诺夫方程,得到...研究了直驱风电场次同步振荡分析的降阶模型,提出了基于交替方向隐式(alternating direction implicit,ADI)的平衡截断方法。首先,根据直驱式永磁同步风电机组的数学表征搭建风电场的数学模型,采用ADI方法迭代求解李亚普诺夫方程,得到可控的格莱姆矩阵与可观的格莱姆矩阵;然后,采用平衡截断的方法得到降阶模型;通过对比全阶模型与降阶模型的时域仿真波形、Bode图、计算耗时以及次同步振荡模式,验证了方法的有效性。仿真结果表明,降阶模型与全阶模型具有很好的一致性,同时计算速度提高,降阶阶数大大降低。展开更多
文摘研究了直驱风电场次同步振荡分析的降阶模型,提出了基于交替方向隐式(alternating direction implicit,ADI)的平衡截断方法。首先,根据直驱式永磁同步风电机组的数学表征搭建风电场的数学模型,采用ADI方法迭代求解李亚普诺夫方程,得到可控的格莱姆矩阵与可观的格莱姆矩阵;然后,采用平衡截断的方法得到降阶模型;通过对比全阶模型与降阶模型的时域仿真波形、Bode图、计算耗时以及次同步振荡模式,验证了方法的有效性。仿真结果表明,降阶模型与全阶模型具有很好的一致性,同时计算速度提高,降阶阶数大大降低。