期刊导航
期刊开放获取
唐山市科学技术情报研究..
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
CodeScore-R:用于评估代码合成功能准确性的自动化鲁棒指标
1
作者
杨光
周宇
+1 位作者
陈翔
张翔宇
《计算机研究与发展》
EI
CSCD
北大核心
2024年第2期291-306,共16页
评估指标在代码合成领域中至关重要.常用的代码评估指标可以分为3种类型:基于匹配、基于语义和基于执行.其中,基于执行的Pass@k指标通过执行测试用例,能够准确判断预测代码的功能准确性.然而,该指标的计算需要大量开销,因此亟需设计一...
评估指标在代码合成领域中至关重要.常用的代码评估指标可以分为3种类型:基于匹配、基于语义和基于执行.其中,基于执行的Pass@k指标通过执行测试用例,能够准确判断预测代码的功能准确性.然而,该指标的计算需要大量开销,因此亟需设计一种自动化评估指标,在无需测试用例时仍可评估预测代码的功能准确性.此外,好的评估指标应当具有鲁棒性,即预测代码发生微小改变时,评估指标仍能保持其准确性.为此,提出了一种基于UniXcoder和对比学习的自动化鲁棒指标CodeScore-R,用于评估代码合成的功能准确性. CodeScore-R采用草图化处理、语法等价转换和变异测试等技术手段,有效减轻了标识符、语法结构和运算符对评估结果的干扰.实验结果表明,在Java和Python语言上的代码生成和迁移任务中,CodeScore-R的表现优于其他无需测试用例的评估指标,且更接近Pass@k指标,并具有更强的鲁棒性.
展开更多
关键词
代码合成评估指标
功能准确性
鲁棒性
代码
合成
神经网络
在线阅读
下载PDF
职称材料
题名
CodeScore-R:用于评估代码合成功能准确性的自动化鲁棒指标
1
作者
杨光
周宇
陈翔
张翔宇
机构
南京航空航天大学计算机科学与技术学院/人工智能学院/软件学院
南通大学信息科学技术学院
出处
《计算机研究与发展》
EI
CSCD
北大核心
2024年第2期291-306,共16页
基金
国家自然科学基金项目(61972197,62372232)
江苏省研究生科研与实践创新计划项目(KYCX23_0396)
中央高校基本科研业务费专项资金资助(NG2023005)。
文摘
评估指标在代码合成领域中至关重要.常用的代码评估指标可以分为3种类型:基于匹配、基于语义和基于执行.其中,基于执行的Pass@k指标通过执行测试用例,能够准确判断预测代码的功能准确性.然而,该指标的计算需要大量开销,因此亟需设计一种自动化评估指标,在无需测试用例时仍可评估预测代码的功能准确性.此外,好的评估指标应当具有鲁棒性,即预测代码发生微小改变时,评估指标仍能保持其准确性.为此,提出了一种基于UniXcoder和对比学习的自动化鲁棒指标CodeScore-R,用于评估代码合成的功能准确性. CodeScore-R采用草图化处理、语法等价转换和变异测试等技术手段,有效减轻了标识符、语法结构和运算符对评估结果的干扰.实验结果表明,在Java和Python语言上的代码生成和迁移任务中,CodeScore-R的表现优于其他无需测试用例的评估指标,且更接近Pass@k指标,并具有更强的鲁棒性.
关键词
代码合成评估指标
功能准确性
鲁棒性
代码
合成
神经网络
Keywords
code synthesis evaluation metric
functional correctness
robustness
code synthesis
neural network
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
CodeScore-R:用于评估代码合成功能准确性的自动化鲁棒指标
杨光
周宇
陈翔
张翔宇
《计算机研究与发展》
EI
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部