Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor sig...Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor signal on line with a hybrid algorithm composed of n means clustering and Kalman filter and then gave the estimation of the sensor signal at the next step. If the difference between the estimation and the actural values of the sensor signal exceeded a threshold, the sensor could be declared to have a failure. The choice of the failure detection threshold depends on the noise variance and the possible prediction error of neural predictor. Results and Conclusion\ The computer simulation results show the proposed method can detect sensor failure correctly for a gyro in an automotive engine.展开更多
Fault diagnostics is an important research area including different techniques.Principal component analysis(PCA)is a linear technique which has been widely used.For nonlinear processes,however,the nonlinear principal ...Fault diagnostics is an important research area including different techniques.Principal component analysis(PCA)is a linear technique which has been widely used.For nonlinear processes,however,the nonlinear principal component analysis(NLPCA)should be applied.In this work,NLPCA based on auto-associative neural network(AANN)was applied to model a chemical process using historical data.First,the residuals generated by the AANN were used for fault detection and then a reconstruction based approach called enhanced AANN(E-AANN)was presented to isolate and reconstruct the faulty sensor simultaneously.The proposed method was implemented on a continuous stirred tank heater(CSTH)and used to detect and isolate two types of faults(drift and offset)for a sensor.The results show that the proposed method can detect,isolate and reconstruct the occurred fault properly.展开更多
Collaboration in wireless sensor systems must be fault-tolerant due to the harsh environmental conditions at which such systems can be deployed. This paper focuses on finding the signal processing algorithms for colla...Collaboration in wireless sensor systems must be fault-tolerant due to the harsh environmental conditions at which such systems can be deployed. This paper focuses on finding the signal processing algorithms for collaborative target detection based on the generalized approach to signal processing (GASP) in the presence of noise. The signal processing algorithms are efficient in terms of communication cost, precision, accuracy, and number of faulty sensors tolerable in the wireless sensor systems. Two types of generalized signal processing algorithms, namely, value fusion and decision fusion constructed according to GASP in the presence of noise, are identified first. When comparing their performance and communication overhead, the decision fusion algorithm is found to become superior to the value fusion algorithm as the ratio of faulty sensors to fault free sensors increases. The use of GASP under designing the value and decision fusion algorithms in wireless sensor systems allows us to obtain the same performance, but at low values of signal energy, as well as under employment of the universally adopted signal processing algorithms widely used in practice.展开更多
文摘Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor signal on line with a hybrid algorithm composed of n means clustering and Kalman filter and then gave the estimation of the sensor signal at the next step. If the difference between the estimation and the actural values of the sensor signal exceeded a threshold, the sensor could be declared to have a failure. The choice of the failure detection threshold depends on the noise variance and the possible prediction error of neural predictor. Results and Conclusion\ The computer simulation results show the proposed method can detect sensor failure correctly for a gyro in an automotive engine.
基金Project(1390/2)supported by Khuzestan Gas Company,Iran
文摘Fault diagnostics is an important research area including different techniques.Principal component analysis(PCA)is a linear technique which has been widely used.For nonlinear processes,however,the nonlinear principal component analysis(NLPCA)should be applied.In this work,NLPCA based on auto-associative neural network(AANN)was applied to model a chemical process using historical data.First,the residuals generated by the AANN were used for fault detection and then a reconstruction based approach called enhanced AANN(E-AANN)was presented to isolate and reconstruct the faulty sensor simultaneously.The proposed method was implemented on a continuous stirred tank heater(CSTH)and used to detect and isolate two types of faults(drift and offset)for a sensor.The results show that the proposed method can detect,isolate and reconstruct the occurred fault properly.
文摘Collaboration in wireless sensor systems must be fault-tolerant due to the harsh environmental conditions at which such systems can be deployed. This paper focuses on finding the signal processing algorithms for collaborative target detection based on the generalized approach to signal processing (GASP) in the presence of noise. The signal processing algorithms are efficient in terms of communication cost, precision, accuracy, and number of faulty sensors tolerable in the wireless sensor systems. Two types of generalized signal processing algorithms, namely, value fusion and decision fusion constructed according to GASP in the presence of noise, are identified first. When comparing their performance and communication overhead, the decision fusion algorithm is found to become superior to the value fusion algorithm as the ratio of faulty sensors to fault free sensors increases. The use of GASP under designing the value and decision fusion algorithms in wireless sensor systems allows us to obtain the same performance, but at low values of signal energy, as well as under employment of the universally adopted signal processing algorithms widely used in practice.