In this paper, a weighted fractional Fourier transform(WFRFT) based cooperative overlay system, aiming to guarantee physical layer(PHY) security, is proposed. The paper elaborates how WFRFT and physical layer properti...In this paper, a weighted fractional Fourier transform(WFRFT) based cooperative overlay system, aiming to guarantee physical layer(PHY) security, is proposed. The paper elaborates how WFRFT and physical layer properties of the wireless medium are collaborated to guarantee the secrecy of wireless transmissions. In the proposed system, WFRFT is first preform on the secret data, such that the transmitted signal is distorted and can only be neutralized by inverse-WFRFT with the same parameter. And then two streams of the transformed sequences that bearing different messages are cooperatively and simultaneously transmitted to two legitimate receivers via a beamforming-liked method, respectively. In general, both the rapid spatial decorrelation property and the inherent security features of WFRFT are leveraged, such that only the eavesdropper's is degraded, and hence, the wireless communication secrecy is reliably guaranteed. Numerical simulations are conducted to evaluate the performance of the proposed system in terms of the average bit error rate and the secrecy capacity.展开更多
Flexible strain sensor devices were fabricated by depositing Pd nanoclusters on PET membranes patterned with interdigital electrodes. The sensors responded to the deformation of the PET membranes with the conductance ...Flexible strain sensor devices were fabricated by depositing Pd nanoclusters on PET membranes patterned with interdigital electrodes. The sensors responded to the deformation of the PET membranes with the conductance changes of the nanocluster films and were characterized by both high gauge factor and wide detection range. The response characteristics of the strain sensors were found to depend strongly on the nanocluster coverage, which was attributed to the percolative nature of the electron transport in the closely spaced nanocluster arrays. By controlling the nanocluster deposition process, a strain sensor composed of nanocluster arrays with a coverage close to the effective percolation threshold was fabricated. The sensor device showed a linear response with a stable gauge factor of 55 for the applied strains from the lower detection limit up to 0.3%. At higher applied strains, a gauge factor as high as 200 was shown. The nanocluster films also demonstrated the ability to response to large deformations up to 8% applied strain, with an extremely high gauge factor of 3500.展开更多
基金supported by the National Basic Research Program of China under Grant 2013CB329003the National Natural Science Founda-tion General Program of China under Grant 61171110
文摘In this paper, a weighted fractional Fourier transform(WFRFT) based cooperative overlay system, aiming to guarantee physical layer(PHY) security, is proposed. The paper elaborates how WFRFT and physical layer properties of the wireless medium are collaborated to guarantee the secrecy of wireless transmissions. In the proposed system, WFRFT is first preform on the secret data, such that the transmitted signal is distorted and can only be neutralized by inverse-WFRFT with the same parameter. And then two streams of the transformed sequences that bearing different messages are cooperatively and simultaneously transmitted to two legitimate receivers via a beamforming-liked method, respectively. In general, both the rapid spatial decorrelation property and the inherent security features of WFRFT are leveraged, such that only the eavesdropper's is degraded, and hence, the wireless communication secrecy is reliably guaranteed. Numerical simulations are conducted to evaluate the performance of the proposed system in terms of the average bit error rate and the secrecy capacity.
基金supported by the National Natural Science Foundation of China(No.11627806)a Project funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions
文摘Flexible strain sensor devices were fabricated by depositing Pd nanoclusters on PET membranes patterned with interdigital electrodes. The sensors responded to the deformation of the PET membranes with the conductance changes of the nanocluster films and were characterized by both high gauge factor and wide detection range. The response characteristics of the strain sensors were found to depend strongly on the nanocluster coverage, which was attributed to the percolative nature of the electron transport in the closely spaced nanocluster arrays. By controlling the nanocluster deposition process, a strain sensor composed of nanocluster arrays with a coverage close to the effective percolation threshold was fabricated. The sensor device showed a linear response with a stable gauge factor of 55 for the applied strains from the lower detection limit up to 0.3%. At higher applied strains, a gauge factor as high as 200 was shown. The nanocluster films also demonstrated the ability to response to large deformations up to 8% applied strain, with an extremely high gauge factor of 3500.