期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于相似日和MDS-PSO-ELman的光伏功率超短期预测
1
作者 杨强强 《物联网技术》 2024年第4期100-102,共3页
光伏电站系统输出功率受环境因素影响较大,具有很大的不确定性,对并网安全稳定运行具有重大影响,为此提出了一种基于MDS-PSO-ELman搭建的功率预测模型。首先,通过灰色关联度选取相似样本日,然后通过MDS给数据降维,提高数据分类的准确性... 光伏电站系统输出功率受环境因素影响较大,具有很大的不确定性,对并网安全稳定运行具有重大影响,为此提出了一种基于MDS-PSO-ELman搭建的功率预测模型。首先,通过灰色关联度选取相似样本日,然后通过MDS给数据降维,提高数据分类的准确性并消除冗余数据。最后,针对ELman神经网络预测模型权值和阈值盲目随机的缺点以及局部最优化选择问题,采用PSO优化预测模型初始参数。同实际光伏发电系统功率相比,该研究模型能够有效预测各天气类型下的光伏发电输出功率且精度较高。 展开更多
关键词 发电 MDS多维尺度变换 PSO粒子群算法 ELman算法 GRA 光伏发电输出功率
在线阅读 下载PDF
基于GRA/EEMD-Informer混合模型的光储直柔配电系统多数据预测方法
2
作者 王炳铮 岳云涛 +1 位作者 李炳华 万珊珊 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第3期86-95,共10页
针对现有时间序列模型预测光储直柔配电系统短期发用电数据精度不高的问题,提出一种基于灰色关联度分析/集合经验模态分解(grey relation analysis,ensemble empirical mode decomposition,GRA/EEMD-Informer)的光储直柔配电系统多数据... 针对现有时间序列模型预测光储直柔配电系统短期发用电数据精度不高的问题,提出一种基于灰色关联度分析/集合经验模态分解(grey relation analysis,ensemble empirical mode decomposition,GRA/EEMD-Informer)的光储直柔配电系统多数据预测模型,通过灰色关联度分析、模态分解,结合自注意力蒸馏机制,有效捕捉输出和输入之间较精确的长程相关性耦合,降低了时空复杂度,极大缓解了传统编解码的局限性。将已建成并投入使用的光伏发电站某月数据、典型办公建筑某月电力数据及电动汽车充电站运行数据作为原始数据,以均方误差、平均绝对误差、均方根误差作为评价指标对模型进行检验,并进行消融实验与分析,最后与长短期记忆网络(long short-term memory,LSTM)、基于粒子群优化(particle swarm optimization,PSO)算法的长短期记忆网络(PSO-LSTM)、Transformer时间序列预测方法对比,结果表明该方法的拟合程度明显高于其他预测方法,验证了GRA/EEMDInformer算法对提高预测能力的有效性和实用性。 展开更多
关键词 储直柔 GRA/EEMD-Informer 光伏发电输出功率 建筑电力负荷 电动汽车负荷
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部