We propose a fully distributed fusion system combining phase-sensitive optical time-domain reflectometry(Φ-OTDR) and OTDR for synchronous vibration and loss measurement by setting an ingenious frequency sweep rate(FS...We propose a fully distributed fusion system combining phase-sensitive optical time-domain reflectometry(Φ-OTDR) and OTDR for synchronous vibration and loss measurement by setting an ingenious frequency sweep rate(FSR) of the optical source. The relationships between FSR, probe pulse width and repeat period are given to balance the amplitude fluctuation of OTDR traces, the dead zone probability and the measurable frequency range of vibration events. In the experiment, we achieve synchronous vibration and loss measurement with FSR of 40 MHz/s, the proble pulse width of 100 ns and repeat rate of 0.4 ms. The fluctuation of OTDR trace is less than 0.45 dB when the signalto-noise ratio(SNR) is over 12 dB for a captured vibration event located at 9.1 km. The proposed method can be used for not only detection but also early warning of damage events in optical communication networks.展开更多
We designed a novel core-suspended capillary fiber that the core was suspended in the air hole and close to the inner surface of the capillary, and experimentally demonstrated its fabrication technology. In addition, ...We designed a novel core-suspended capillary fiber that the core was suspended in the air hole and close to the inner surface of the capillary, and experimentally demonstrated its fabrication technology. In addition, a method for linking a single mode fiber and a core-suspended fiber was proposed based on splicing and tapering at the fusion point between the two fibers. By combining with the optical time domain reflectometer technology, we constructed a distributed gas sensor system to monitor greenhouse gas based on this novel fiber.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61405090,61307096 and 61540017)
文摘We propose a fully distributed fusion system combining phase-sensitive optical time-domain reflectometry(Φ-OTDR) and OTDR for synchronous vibration and loss measurement by setting an ingenious frequency sweep rate(FSR) of the optical source. The relationships between FSR, probe pulse width and repeat period are given to balance the amplitude fluctuation of OTDR traces, the dead zone probability and the measurable frequency range of vibration events. In the experiment, we achieve synchronous vibration and loss measurement with FSR of 40 MHz/s, the proble pulse width of 100 ns and repeat rate of 0.4 ms. The fluctuation of OTDR trace is less than 0.45 dB when the signalto-noise ratio(SNR) is over 12 dB for a captured vibration event located at 9.1 km. The proposed method can be used for not only detection but also early warning of damage events in optical communication networks.
基金This work was supported by the Key Laboratory Program for in-Fiber Integrated Optics of the Education Ministry of China, partially supported by the National Nature Science Foundation of China (No. 41174161) and by China Postdoctoral Science Foundation Grant (2013M531013).
文摘We designed a novel core-suspended capillary fiber that the core was suspended in the air hole and close to the inner surface of the capillary, and experimentally demonstrated its fabrication technology. In addition, a method for linking a single mode fiber and a core-suspended fiber was proposed based on splicing and tapering at the fusion point between the two fibers. By combining with the optical time domain reflectometer technology, we constructed a distributed gas sensor system to monitor greenhouse gas based on this novel fiber.